Chapter 5: Problem 37
Let \(a, b, c,\) and \(\omega\) be constants, with \(a \neq 0\) and \(\omega>0\), and let $$ P(x)=p_{0}+p_{1} x+\cdots+p_{k} x^{k} \quad \text { and } \quad Q(x)=q_{0}+q_{1} x+\cdots+q_{k} x^{k} $$ where at least one of the coefficients \(p_{k}, q_{k}\) is nonzero, so \(k\) is the larger of the degrees of \(P\) and \(Q\). (a) Show that if \(\cos \omega x\) and \(\sin \omega x\) are not solutions of the complementary equation $$ a y^{\prime \prime}+b y^{\prime}+c y=0 $$ then there are polynomials $$ A(x)=A_{0}+A_{1} x+\cdots+A_{k} x^{k} \quad \text { and } \quad B(x)=B_{0}+B_{1} x+\cdots+B_{k} x^{k} $$ such that $$ \begin{aligned} \left(c-a \omega^{2}\right) A+b \omega B+2 a \omega B^{\prime}+b A^{\prime}+a A^{\prime \prime} &=P \\ -b \omega A+\left(c-a \omega^{2}\right) B-2 a \omega A^{\prime}+b B^{\prime}+a B^{\prime \prime} &=Q \end{aligned} $$ where \(\left(A_{k}, B_{k}\right),\left(A_{k-1}, B_{k-1}\right), \ldots,\left(A_{0}, B_{0}\right)\) can be computed successively by solving the systems $$ \begin{aligned} \left(c-a \omega^{2}\right) A_{k}+b \omega B_{k} &=p_{k} \\ -b \omega A_{k}+\left(c-a \omega^{2}\right) B_{k} &=q_{k} \end{aligned} $$ and, if \(1 \leq r \leq k,\) $$ \begin{aligned} \left(c-a \omega^{2}\right) A_{k-r}+b \omega B_{k-r} &=p_{k-r}+\cdots \\ -b \omega A_{k-r}+\left(c-a \omega^{2}\right) B_{k-r} &=q_{k-r}+\cdots \end{aligned} $$ where the terms indicated by "..." depend upon the previously computed coefficients with subscripts greater than \(k-r\). Conclude from this and Exercise \(36(\mathbf{b})\) that $$ y_{p}=A(x) \cos \omega x+B(x) \sin \omega x $$ is a particular solution of $$ a y^{\prime \prime}+b y^{\prime}+c y=P(x) \cos \omega x+Q(x) \sin \omega x . $$ (b) Conclude from Exercise \(36(\mathbf{c})\) that the equation $$ a\left(y^{\prime \prime}+\omega^{2} y\right)=P(x) \cos \omega x+Q(x) \sin \omega x $$ does not have a solution of the form (B) with \(A\) and \(B\) as in (A). Then show that there are polynomials $$ A(x)=A_{0} x+A_{1} x^{2}+\cdots+A_{k} x^{k+1} \quad \text { and } \quad B(x)=B_{0} x+B_{1} x^{2}+\cdots+B_{k} x^{k+1} $$ such that $$ \begin{aligned} a\left(A^{\prime \prime}+2 \omega B^{\prime}\right) &=P \\ a\left(B^{\prime \prime}-2 \omega A^{\prime}\right) &=Q \end{aligned} $$ where the pairs \(\left(A_{k}, B_{k}\right),\left(A_{k-1}, B_{k-1}\right), \ldots,\left(A_{0}, B_{0}\right)\) can be computed successively as follows: $$ \begin{aligned} A_{k} &=-\frac{q_{k}}{2 a \omega(k+1)} \\ B_{k} &=\frac{p_{k}}{2 a \omega(k+1)}, \end{aligned} $$ and, if \(k \geq 1\), $$ A_{k-j}=-\frac{1}{2 \omega}\left[\frac{q_{k-j}}{a(k-j+1)}-(k-j+2) B_{k-j+1}\right] $$ $$ B_{k-j}=\frac{1}{2 \omega}\left[\frac{p_{k-j}}{a(k-j+1)}-(k-j+2) A_{k-j+1}\right] $$ for \(1 \leq j \leq k\). Conclude that (B) with this choice of the polynomials \(A\) and \(B\) is a particular solution of \((\mathrm{C})\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.