Chapter 12: Problem 23
In Exercises \(17-28\) define the formal solution of
$$ u_{x x}+u_{u y}=0, \quad 0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 12: Problem 23
In Exercises \(17-28\) define the formal solution of
$$ u_{x x}+u_{u y}=0, \quad 0
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose \(\lambda\) and \(\mu\) are constants and either \(p_{n}(x)=\cos n \lambda x\) or \(p_{n}(x)=\sin n \lambda x,\) while either \(q_{n}(t)=\cos n \mu t\) or \(q_{n}(t)=\sin n \mu t\) for \(n=1,2,3, \ldots\). Let $$ u(x, t)=\sum_{n=1}^{\infty} k_{n} p_{n}(x) q_{n}(t). $$ where \(\left\\{k_{n}\right\\}_{n=1}^{\infty}\) are constants. (a) Show that if \(\sum_{n=1}^{\infty}\left|k_{n}\right|\) converges then \(u(x, t)\) converges for all \((x, t)\). (b) Use Theorem 12.1.2 to show that if \(\sum_{n=1}^{\infty} n\left|k_{n}\right|\) converges then (A) can be differentiated term by term with respect to \(x\) and \(t\) for all \((x, t) ;\) that is, $$ u_{x}(x, t)=\sum_{n=1}^{\infty} k_{n} p_{n}^{\prime}(x) q_{n}(t) $$ and $$ u_{t}(x, t)=\sum_{n=1}^{\infty} k_{n} p_{n}(x) q_{n}^{\prime}(t) $$ (c) Suppose \(\sum_{n=1}^{\infty} n^{2}\left|k_{n}\right|\) converges. Show that $$ u_{x x}(x, y)=\sum_{n=1}^{\infty} k_{n} p_{n}^{\prime \prime}(x) q_{n}(t). $$ and $$ u_{t t}(x, y)=\sum_{n=1}^{\infty} k_{n} p_{n}(x) q_{n}^{\prime \prime}(t). $$ (d) Suppose \(\sum_{n=1}^{\infty} n^{2}\left|\alpha_{n}\right|\) and \(\sum_{n=1}^{\infty} n\left|\beta_{n}\right|\) both converge. Show that the formal solution $$ u(x, t)=\sum_{n=1}^{\infty}\left(\alpha_{n} \cos \frac{n \pi a t}{L}+\frac{\beta_{n} L}{n \pi a} \sin \frac{n \pi a t}{L}\right) \sin \frac{n \pi x}{L} $$ of Equation 12.2.1 satisfies \(u_{t t}=a^{2} u_{x x}\) for all \((x, t)\). This conclusion also applies to the formal solutions defined in Exercises \(17,34,\) and 49 .
In Exercises \(17-28\) define the formal solution of
$$ u_{x x}+u_{u y}=0, \quad 0
Solve the initial-boundaryvalue problem. Where indicated by \([\mathrm{C}]\),
perform numerical experiments. To simplify the computation of coefficients in
some of these problems, check first to see if \(u(x, 0)\) is a polynomial that
satisfies the boundary conditions. If it does, apply Theorem 11.3.5; also, see
Exercises \(11.3 .35(\mathbf{b}), 11.3 .42(\mathbf{b}),\) and \(11.3
.50(\mathbf{b})\).
$$
\begin{array}{l}
u_{t}=7 u_{x x}, \quad 0
Define the formal solution of
$$
\begin{array}{c}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad
\rho_{0}
In Exercises \(17-28\) define the formal solution of
$$ u_{x x}+u_{u y}=0, \quad 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.