Chapter 11: Problem 29
Suppose \(\phi_{1}, \phi_{2}, \ldots, \phi_{m}\) are orthogonal on \([a, b]\) and $$ \int_{a}^{b} \phi_{n}^{2}(x) d x \neq 0, \quad n=1,2, \ldots, m $$ If \(a_{1}, a_{2}, \ldots, a_{m}\) are arbitrary real numbers, define $$ P_{m}=a_{1} \phi_{1}+a_{2} \phi_{2}+\cdots+a_{m} \phi_{m} $$ Let $$ F_{m}=c_{1} \phi_{1}+c_{2} \phi_{2}+\cdots+c_{m} \phi_{m} $$ where $$ c_{n}=\frac{\int_{a}^{b} f(x) \phi_{n}(x) d x}{\int_{a}^{b} \phi_{n}^{2}(x) d x} $$ that is, \(c_{1}, c_{2}, \ldots, c_{m}\) are Fourier coefficients of \(f\). (a) Show that $$ \int_{a}^{b}\left(f(x)-F_{m}(x)\right) \phi_{n}(x) d x=0, \quad n=1,2, \ldots, m $$ (b) Show that $$ \int_{a}^{b}\left(f(x)-F_{m}(x)\right)^{2} d x \leq \int_{a}^{b}\left(f(x)-P_{m}(x)\right)^{2} d x $$ with equality if and only if \(a_{n}=c_{n}, n=1,2, \ldots, m\) (c) Show that $$ \int_{a}^{b}\left(f(x)-F_{m}(x)\right)^{2} d x=\int_{a}^{b} f^{2}(x) d x-\sum_{n=1}^{m} c_{n}^{2} \int_{a}^{b} \phi_{n}^{2} d x $$ (d) Conclude from (c) that $$ \sum_{n=1}^{m} c_{n}^{2} \int_{a}^{b} \phi_{n}^{2}(x) d x \leq \int_{a}^{b} f^{2}(x) d x $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.