Chapter 10: Problem 7
Let $$ A=\left[\begin{array}{ll} 2 & 4 \\ 4 & 2 \end{array}\right], \quad \mathbf{y}_{1}=\left[\begin{array}{c} e^{6 t} \\ e^{6 t} \end{array}\right], \quad \mathbf{y}_{2}=\left[\begin{array}{r} e^{-2 t} \\ -e^{-2 t} \end{array}\right], \quad \mathbf{k}=\left[\begin{array}{r} -3 \\ 9 \end{array}\right] $$ (a) Verify that \(\left\\{\mathbf{y}_{1}, \mathbf{y}_{2}\right\\}\) is a fundamental set of solutions for \(\mathbf{y}^{\prime}=A \mathbf{y}\). (b) Solve the initial value problem $$ \mathbf{y}^{\prime}=A \mathbf{y}, \quad \mathbf{y}(0)=\mathbf{k} $$ (c) Use the result of Exercise \(6(\mathbf{b})\) to find a formula for the solution of (A) for an arbitrary initial vector \(\mathbf{k}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.