Chapter 1: Problem 6
Verify that the function is a solution of the initial value problem. (a) \(y=x^{2}(1+\ln x) ; \quad y^{\prime \prime}=\frac{3 x y^{\prime}-4 y}{x^{2}}, \quad y(c)=2 e^{2}, \quad y^{\prime}(c)=5 e\) $$ \text { (b) } y=\frac{x^{2}}{3}+x-1 ; \quad y^{\prime \prime}=\frac{x^{2}-x y^{\prime}+y+1}{x^{2}}, \quad y(1)=\frac{1}{3}, \quad y^{\prime}(1)=\frac{5}{3} $$ (c) \(y=\left(1+x^{2}\right)^{-1 / 2} ; \quad y^{\prime \prime}=\frac{\left(x^{2}-1\right) y-x\left(x^{2}+1\right) y^{\prime}}{\left(x^{2}+1\right)^{2}}, y(0)=1\) \(y^{\prime}(0)=0\) (d) \(y=\frac{x^{2}}{1-x} ; \quad y^{\prime \prime}=\frac{2(x+y)\left(x y^{\prime}-y\right)}{x^{3}}, \quad y(1 / 2)=1 / 2, \quad y^{\prime}(1 / 2)=3\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.