In each exercise,
(a) Solve the initial value problem analytically, using an appropriate
solution technique.
(b) For the given initial value problem, write the Heun's method algorithm,
$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1},
y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right] .
$$
(c) For the given initial value problem, write the modified Euler's method
algorithm,
$$
y_{n+1}=y_{n}+h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(t_{n},
y_{n}\right)\right) .
$$
(d) Use a step size \(h=0.1\). Compute the first three approximations, \(y_{1},
y_{2}, y_{3}\), using the method in part (b).
(e) Use a step size \(h=0.1\). Compute the first three approximations, \(y_{1},
y_{2}, y_{3}\), using the method in part (c).
(f) For comparison, calculate and list the exact solution values,
\(y\left(t_{1}\right), y\left(t_{2}\right), y\left(t_{3}\right)\).
\(y^{\prime}=-y, \quad y(0)=1\)