Chapter 6: Problem 7
These exercises explore the question "When one of two species in a colony is desirable and the other is undesirable, is it better to use resources to nurture the growth of the desirable species or to harvest the undesirable one?" Let \(x(t)\) and \(y(t)\) represent the populations of two competing species, with \(x(t)\) the desirable species. Assume that if resources are invested in promoting the growth of the desirable species, the population dynamics are given by $$ \begin{aligned} &x^{\prime}=r(1-\alpha x-\beta y) x+\mu x \\ &y^{\prime}=r(1-\alpha y-\beta x) y \end{aligned} $$ If resources are invested in harvesting the undesirable species, the dynamics are $$ \begin{aligned} &x^{\prime}=r(1-\alpha x-\beta y) x \\ &y^{\prime}=r(1-\alpha y-\beta x) y-\mu y \end{aligned} $$ In (10), \(r, \alpha, \beta\), and \(\mu\) are positive constants. For simplicity, we assume the same parameter values for both species. For definiteness, assume that \(\alpha>\beta>0\). Consider system (10), which describes the strategy in which resources are invested in harvesting the undesirable species. Again assume that \(\alpha>\beta>0\). (a) Determine the four equilibrium points for the system. (b) Show that it is possible, by investing sufficient resources (that is, by making \(\mu\) large enough), to prevent equilibrium coexistence of the two species. In fact, if \(\mu>r\), show that there are only two physically relevant equilibrium points. (c) Assume \(\mu>r\). Compute the linearized system at each of the two physically relevant equilibrium points. Determine the stability characteristics of the linearized system at each of these equilibrium points. (d) System (10) can be shown to be an almost linear system at each of the equilibrium points. Use this fact and the results of part (c) to infer the stability properties of system (10) at each of the two equilibrium points of interest. (e) Sketch the direction field. Will sufficiently aggressive harvesting of species \(y\) ultimately drive undesirable species \(y\) to extinction? If so, what is the limiting population of species \(x\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.