Chapter 6: Problem 5
In each exercise, (a) Rewrite the given \(n\)th order scalar initial value problem as \(\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}), \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}\), by defining \(y_{1}(t)=y(t), y_{2}(t)=y^{\prime}(t), \ldots, y_{n}(t)=y^{(n-1)}(t)\) and defining \(y_{1}(t)=y(t), y_{2}(t)=y(t), \ldots, y_{n}(t)=y^{\prime(n-t)}(t)\) \(\mathbf{y}(t)=\left[\begin{array}{c}y_{1}(t) \\ y_{2}(t) \\ \vdots \\\ y_{n}(t)\end{array}\right]\) (b) Compute the \(n^{2}\) partial derivatives \(\partial f_{i}\left(t, y_{1}, \ldots, y_{n}\right) / \partial y_{j}, i, j=1, \ldots, n\). (c) For the system obtained in part (a), determine where in \((n+1)\)-dimensional \(t \mathbf{y}\)-space the hypotheses of Theorem \(6.1\) are not satisfied. In other words, at what points \(\left(t, y_{1}, \ldots, y_{n}\right)\), if any, does at least one component function \(f_{i}\left(t, y_{1}, \ldots, y_{n}\right)\) and/or at least one partial derivative function \(\partial f_{i}\left(t, y_{1}, \ldots, y_{n}\right) / \partial y_{i}, i, j=1, \ldots, n\) fail to be continuous? What is the largest open rectangular region \(R\) where the hypotheses of Theorem \(6.1\) hold? $$ t y^{\prime \prime}+\frac{1}{1+y+2 y^{\prime}}=e^{-t}, \quad y(2)=2, \quad y^{\prime}(2)=1 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.