Chapter 6: Problem 30
Let $$ A=\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] $$ be a real invertible matrix, and consider the system \(\mathbf{y}^{\prime}=A \mathbf{y}\). (a) What conditions must the matrix entries \(a_{i j}\) satisfy to make the equilibrium point \(\mathbf{y}_{e}=\mathbf{0}\) a center? (b) Assume that the equilibrium point at the origin is a center. Show that the system \(\mathbf{y}^{\prime}=A \mathbf{y}\) is a Hamiltonian system. (c) Is the converse of the statement in part (b) true? In other words, if the system \(\mathbf{y}^{\prime}=A \mathbf{y}\) is a Hamiltonian system, does it necessarily follow that \(\mathbf{y}_{e}=\mathbf{0}\) is a center? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.