Chapter 6: Problem 3
In each exercise, the eigenpairs of a \((2 \times 2)\) matrix \(A\) are given where both eigenvalues are real. Consider the phase-plane solution trajectories of the linear system \(\mathbf{y}^{\prime}=A \mathbf{y}\), where $$ \mathbf{y}(t)=\left[\begin{array}{l} x(t) \\ y(t) \end{array}\right] $$ (a) Use Table \(6.2\) to classify the type and stability characteristics of the equilibrium point at \(\mathbf{y}=\mathbf{0}\). (b) Sketch the two phase-plane lines defined by the eigenvectors. If an eigenvector is \(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\), the line of interest is \(u_{2} x-u_{1} y=0\). Solution trajectories originating on such a line stay on the line; they move toward the origin as time increases if the corresponding eigenvalue is negative or away from the origin if the eigenvalue is positive. (c) Sketch appropriate direction field arrows on both lines. Use this information to sketch a representative trajectory in each of the four phase- plane regions having these lines as boundaries. Indicate the direction of motion of the solution point on each trajectory. $$ \lambda_{1}=2, \quad \mathbf{x}_{1}=\left[\begin{array}{l} 2 \\ 0 \end{array}\right] ; \quad \lambda_{2}=1, \quad \mathbf{x}_{2}=\left[\begin{array}{l} 0 \\ 2 \end{array}\right] $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.