Chapter 6: Problem 15
Each exercise lists a nonlinear system \(\mathbf{z}^{\prime}=A \mathbf{z}+\mathbf{g}(\mathbf{z})\), where \(A\) is a constant ( \(2 \times 2\) ) invertible matrix and \(\mathbf{g}(\mathbf{z})\) is a \((2 \times 1)\) vector function. In each of the exercises, \(\mathbf{z}=\mathbf{0}\) is an equilibrium point of the nonlinear system. (a) Identify \(A\) and \(\mathbf{g}(\mathbf{z})\). (b) Calculate \(\|\mathbf{g}(\mathbf{z})\|\). (c) Is \(\lim _{\mid \mathbf{z} \| \rightarrow 0}\|\mathbf{g}(\mathbf{z})\| /\|\mathbf{z}\|=0\) ? Is \(\mathbf{z}^{\prime}=A \mathbf{z}+\mathbf{g}(\mathbf{z})\) an almost linear system at \(\mathbf{z}=\mathbf{0}\) ? (d) If the system is almost linear, use Theorem \(6.4\) to choose one of the three statements: (i) \(\mathbf{z}=\mathbf{0}\) is an asymptotically stable equilibrium point. (ii) \(\mathbf{z}=\mathbf{0}\) is an unstable equilibrium point. (iii) No conclusion can be drawn by using Theorem \(6.4\). $$ \begin{aligned} &z_{1}^{\prime}=-z_{1}+3 z_{2}+z_{2} \cos \sqrt{z_{1}^{2}+z_{2}^{2}} \\ &z_{2}^{\prime}=-z_{1}-5 z_{2}+z_{1} \cos \sqrt{z_{1}^{2}+z_{2}^{2}} \end{aligned} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.