Chapter 4: Problem 36
Consider the \(R L\) network shown in the figure. Assume that the loop currents \(I_{1}\) and \(I_{2}\) are zero until a voltage source \(V_{S}(t)\), having the polarity shown, is turned on at time \(t=0 .\) Applying Kirchhoff's voltage law to each loop, we obtain the equations $$ \begin{aligned} -V_{S}(t)+L_{1} \frac{d I_{1}}{d t}+R_{1} I_{1}+R_{3}\left(I_{1}-I_{2}\right) &=0 \\ R_{3}\left(I_{2}-I_{1}\right)+R_{2} I_{2}+L_{2} \frac{d I_{2}}{d t} &=0 \end{aligned} $$ (a) Formulate the initial value problem for the loop currents, \(\left[\begin{array}{l}I_{1}(t) \\ I_{2}(t)\end{array}\right]\), assuming that $$ L_{1}=L_{2}=0.5 H, \quad R_{1}=R_{2}=1 k \Omega, \quad \text { and } \quad R_{3}=2 k \Omega . $$ (b) Determine a fundamental matrix for the associated linear homogeneous system. (c) Use the method of variation of parameters to solve the initial value problem for the case where \(V_{S}(t)=1\) for \(t>0\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.