Chapter 4: Problem 27
We consider systems of second order linear equations. Such systems arise, for instance, when Newton's laws are used to model the motion of coupled spring- mass systems, such as those in Exercises 31-32. In each of Exercises \(25-30\), let \(A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] .\) Note that the eigenpairs of \(A\) are \(\lambda_{1}=3, \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\) and \(\lambda_{2}=1, \mathbf{x}_{2}=\left[\begin{array}{r}1 \\\ -1\end{array}\right] .\) (a) Let \(T=\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]\) denote the matrix of eigenvectors that diagonalizes \(A\). Make the change of variable \(\mathbf{z}(t)=T^{-1} \mathbf{y}(t)\), and reformulate the given problem as a set of uncoupled second order linear problems. (b) Solve the uncoupled problem for \(\mathbf{z}(t)\), and then form \(\mathbf{y}(t)=T \mathbf{z}(t)\) to solve the original problem.\(\mathbf{y}^{\prime \prime}+A \mathbf{y}=\left[\begin{array}{l}1 \\\ 0\end{array}\right], \quad \mathbf{y}(0)=\left[\begin{array}{l}1 \\\ 0\end{array}\right], \quad \mathbf{y}^{\prime}(0)=\left[\begin{array}{l}0 \\\ 1\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.