Assume the characteristic equation of \(y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1}
y^{\prime}+a_{0} y=0\) has distinct roots \(\lambda_{1}, \lambda_{2}, \ldots,
\lambda_{n}\). It can be shown that the Vandermonde \(^{8}\) determinant has the
value
$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & & \lambda_{n} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & & \lambda_{n}^{2} \\
\vdots & & & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right|=\prod_{i, j=1 \atop
i>i}^{n}\left(\lambda_{i}-\lambda_{j}\right)
$$
Use this fact to show that \(\left\\{e^{\lambda_{1} t}, e^{\lambda_{2} t},
\ldots, e^{\lambda_{n} t}\right\\}\) is a fundamental set of solutions.