Chapter 3: Problem 15
The functions \(u_{1}(t), u_{2}(t)\), and \(u_{3}(t)\) are solutions of the differential equations $$ \begin{aligned} &u_{1}^{\prime \pi}+p(t) u_{1}^{\prime}+q(t) u_{1}=2 e^{t}+1, \quad u_{2}^{\prime \prime}+p(t) u_{2}^{\prime}+q(t) u_{2}=4, \\ &u_{3}^{\prime \prime}+p(t) u_{3}^{\prime}+q(t) u_{3}=3 t . \end{aligned} $$ Use the functions \(u_{1}(t), u_{2}(t)\), and \(u_{3}(t)\) to construct a particular solution of the given differential equation. $$y^{\prime \prime}+p(t) y^{\prime}+q(t) y=t+2$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.