Chapter 2: Problem 22
Suppose that at some initial time the pendulum is located at angle \(\theta_{0}\) with an angular velocity \(d \theta / d t=\omega_{0}\) radians/sec. (a) Equation (15) is a second order differential equation. Rewrite it as a first order separable equation by adopting angle \(\theta\) as the independent variable, using the fact that $$ \theta^{\prime \prime}=\frac{d}{d t}\left(\frac{d \theta}{d t}\right)=\frac{d \omega}{d t}=\frac{d \omega}{d \theta} \frac{d \theta}{d t}=\omega \frac{d \omega}{d \theta} . $$ Complete the specification of the initial value problem by specifying an appropriate initial condition. (b) Obtain the implicit solution $$ m l^{2} \frac{\omega^{2}}{2}-m g l \cos \theta=m l^{2} \frac{\omega_{0}^{2}}{2}-m g l \cos \theta_{0^{-}} $$ The pendulum is a conservative system; that is, energy is neither created nor destroyed. Equation (16) is a statement of conservation of energy. At a position defined by the angle \(\theta\), the quantity \(m l^{2} \omega^{2} / 2\) is the kinetic energy of the pendulum while the term \(-m g l \cos \theta\) is the potential energy, referenced to the horizontal position \(\theta=\pi / 2\). The constant right-hand side is the total initial energy. (c) Determine the angular velocity at the instant the pendulum reaches the vertically downward position, \(\theta=0\). Express your answer in terms of the constants \(\omega_{0}\) and \(\theta_{0}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.