Chapter 2: Problem 10
Consider a population modeled by the initial value problem $$ \frac{d P}{d t}=(1-P) P+M, \quad P(0)=P_{0} $$ where the migration rate \(M\) is constant. [The model (8) is derived from equation (6) by setting the constants \(r\) and \(P_{*}\) to unity. We did this so that we can focus on the effect \(M\) has on the solutions.] For the given values of \(M\) and \(P(0)\), (a) Determine all the equilibrium populations (the nonnegative equilibrium solutions) of differential equation (8). As in Example 1, sketch a diagram showing those regions in the first quadrant of the \(t P\)-plane where the population is increasing \(\left[P^{\prime}(t)>0\right]\) and those regions where the population is decreasing \(\left[P^{\prime}(t)<0\right]\). (b) Describe the qualitative behavior of the solution as time increases. Use the information obtained in (a) as well as the insights provided by the figures in Exercises 11-13 (these figures provide specific but representative examples of the possibilities). $$ M=2, \quad P(0)=4 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.