The objective of this exercise is to show that solution (9),
$$
\mathbf{y}(t)=\Psi(t) D^{-1} \mathbf{f}+\Psi(t) \int_{a}^{b} \Psi^{-1}(s)
\mathbf{g}(s) d s, \quad a \leq t \leq b,
$$
does not depend on the particular choice of the fundamental matrix \(\Psi(t) .\)
Let \(\Psi_{1}(t)\) and \(\Psi_{2}(t)\) denote any two fundamental matrices. Use
the following two facts:
(i) There exists a constant nonsingular matrix, call it \(C\), such that
\(\Psi_{2}(t)=\Psi_{1}(t) C\).
(ii) If \(A\) and \(B\) are any two \((n \times n)\) nonsingular matrices, then the
matrix product \(A B\) is nonsingular and \((A B)^{-1}=B^{-1} A^{-1}\).
(a) Show that \(-P^{[b]} \Psi_{1}(b) \int_{a}^{b} \Psi_{1}^{-1}(s)
\mathbf{g}(s) d s+\alpha=-P^{[b]} \Psi_{2}(b) \int_{a}^{b} \Psi_{2}^{-1}(s)
\mathbf{g}(s) d s+\alpha\). This shows that the \((n \times 1)\) vector \(f\) does
not depend on the choice of fundamental matrix.
(b) Let \(D_{1}=P^{[a]} \Psi_{1}(a)+P^{[b]} \Psi_{1}(b)\) and \(D_{2}=P^{[a]}
\Psi_{2}(a)+P^{[b]} \Psi_{2}(b)\). Show that \(D_{2}^{-1}=\) \(C^{-1} D_{1}^{-1}\),
and use this fact to show that the matrix product \(\Psi(t) D^{-1}\) does not
depend on the choice of fundamental matrix.
(c) Finally, show that \(\Psi_{1}(t) \int_{a}^{b} \Psi_{1}^{-1}(s)
\mathbf{g}(s) d s=\Psi_{2}(t) \int_{a}^{b} \Psi_{2}^{-1}(s) \mathbf{g}(s) d
s\). [The argument is basically the same as that of part (a).]