Chapter 9: Problem 9
Determine the periodic solutions, if any, of the system $$ \frac{d x}{d t}=y+\frac{x}{\sqrt{x^{2}+y^{2}}}\left(x^{2}+y^{2}-2\right), \quad \frac{d y}{d t}=-x+\frac{y}{\sqrt{x^{2}+y^{2}}}\left(x^{2}+y^{2}-2\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Differential Equations
Polar Coordinates
- With the transformation:
- \( x = r \cos \theta \)
- \( y = r \sin \theta \)
Autonomous Systems
- \( \frac{dr}{dt} = r\left(1 - \frac{2}{r^2}\right) \)
- \( \frac{d\theta}{dt} = -1 \)
Polar Coordinate Transformation
- \( x = r \cos \theta \)
- \( y = r \sin \theta \)
- \( x \text{ and } y \)
- to a system with
- radius \( r \)
- angle \( \theta \)
- \( \frac{dr}{dt} \) and \( \frac{d\theta}{dt} \)