Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the periodic solutions, if any, of the system $$ \frac{d x}{d t}=y+\frac{x}{\sqrt{x^{2}+y^{2}}}\left(x^{2}+y^{2}-2\right), \quad \frac{d y}{d t}=-x+\frac{y}{\sqrt{x^{2}+y^{2}}}\left(x^{2}+y^{2}-2\right) $$

Short Answer

Expert verified
The periodic solutions of the given ODE system are: r(t) = √2, θ(t) = -t + c.

Step by step solution

01

Rewrite the ODE system in polar coordinates

Using the polar coordinate transformation \(x = r\cos\theta\), and \(y = r\sin\theta\), rewrite the given ODEs in terms of \(r\) and \(\theta\). To do this, we first differentiate \(x\) and \(y\) with respect to time \(t\) and in terms of \(r\) and \(\theta\): $$ \frac{dx}{dt} = \frac{dr}{dt}\cos\theta - r\sin\theta\frac{d\theta}{dt} $$ $$ \frac{dy}{dt} = \frac{dr}{dt}\sin\theta + r\cos\theta\frac{d\theta}{dt} $$ Now, substitute the given ODEs into these equations to form a system of equations involving \(\frac{dr}{dt}\) and \(\frac{d\theta}{dt}\).
02

Isolate \(\frac{dr}{dt}\) and \(\frac{d\theta}{dt}\)

Solve for \(\frac{dr}{dt}\) and \(\frac{d\theta}{dt}\) to obtain the following ODE system in polar coordinates: $$ \frac{dr}{dt} = r\left(1 - \frac{2}{r^2}\right), $$ $$ \frac{d\theta}{dt} = -1 $$
03

Solve the ODE for \(r\)

The \(\frac{dr}{dt}\) ODE can be separated and solved for \(r(t)\): $$ \int\frac{dr}{r\left(1-\frac{2}{r^2}\right)} = \int dt. $$ By solving this integral, we find that: $$ r^2(t) = k e^{2t} + 2, $$ where \(k\) is an integration constant.
04

Solve the ODE for \(\theta\)

The \(\frac{d\theta}{dt}\) ODE is already separated, so it's easy to find the solution for \(\theta(t)\): $$ \int d\theta = -\int dt \quad \Rightarrow \quad \theta(t) = -t + c, $$ where \(c\) is another integration constant.
05

Identify periodic solutions

Since the ODEs are linear and autonomous, periodic solutions occur when \(\frac{dr}{dt} = 0\). This happens when the constant term in parentheses is zero: $$ 1-\frac{2}{r^2} = 0. $$ The solution to this equation is \(r^2 = 2\), meaning that \(r = \sqrt{2}\), which corresponds to a periodic solution. Therefore, the periodic solutions of the given ODE system are given by: $$ \boldsymbol{r(t) = \sqrt{2}, \quad \theta(t) = -t + c}. $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Differential Equations
Differential equations are mathematical equations that involve an unknown function and its derivatives. They play a crucial role in expressing and investigating how different quantities change with respect to each other. The system in this exercise is a prime example where the dynamics of variables, such as position, are represented via differential equations. In particular, the given system shows what is known as a coupled differential equation. Instead of having a single differential equation, we have two that are interconnected through their variables. Differential equations can be tricky, but with practice, they become a powerful tool for modeling real-world phenomena.
Polar Coordinates
Polar coordinates are an alternative to the more familiar Cartesian coordinates, used for describing points in a plane. Instead of using horizontal and vertical measurements, polar coordinates use a distance from a reference point and an angle from a reference direction. In this exercise, the ODE system is rewritten using polar coordinates which substitute the Cartesian coordinates
  • With the transformation:
    • \( x = r \cos \theta \)
    • \( y = r \sin \theta \)
By doing this, we can simplify the complex interactions between the variables into radial and angular components. Polar coordinates can make certain problems easier to visualize and solve, especially those involving rotations or periodic behavior.
Autonomous Systems
An autonomous system is a type of differential equation where the system's rules do not explicitly depend on time. This means the system's behavior relies solely on the current state variables, not the temporal progression. The independence from time in autonomous systems simplifies analysis, especially when looking for equilibrium points and periodic solutions. In the given exercise, both
  • \( \frac{dr}{dt} = r\left(1 - \frac{2}{r^2}\right) \)
  • \( \frac{d\theta}{dt} = -1 \)
are autonomous. This allows the focus to be on the geometry of the solutions rather than their specific trajectory over time. Autonomous systems are especially powerful in identifying long-term behavior, such as stability and periodic orbits.
Polar Coordinate Transformation
Polar coordinate transformation involves converting a system given in Cartesian coordinates into a system expressed in polar coordinates. This is done by substituting
  • \( x = r \cos \theta \)
  • \( y = r \sin \theta \)
The transformation helps in solving certain types of differential equations that have rotational symmetry or cyclic behavior. By moving to polar coordinates, variables become easier to handle, such as moving from a system involving two variables
  • \( x \text{ and } y \)
  • to a system with
    • radius \( r \)
    • angle \( \theta \)
In this exercise, transforming to polar coordinates simplifies the process of finding periodic solutions, as seen in the expression
  • \( \frac{dr}{dt} \) and \( \frac{d\theta}{dt} \)
which are more straightforward to solve thanks to this transformation. Using polar methods can greatly assist in gaining insights into the system's overall dynamics.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The motion of a certain undamped pendulum is described by the equations $$ d x / d t=y, \quad d y / d t=-4 \sin x $$ If the pendulum is set in motion with an angular displacement \(A\) and no initial velocity, then the initial conditions are \(x(0)=A, y(0)=0\) (a) Let \(A=0.25\) and plot \(x\) versus \(t\). From the graph estimate the amplitude \(R\) and period \(T\) of the resulting motion of the pendulum. (b) Repeat part (a) for \(A=0.5,1.0,1.5,\) and \(2.0 .\) (c) How do the amplitude and period of the pendulum's motion depend on the initial position \(A^{7}\) Draw a graph to show each of these relationships. Can you say anything about the limiting value of the period as \(A \rightarrow 0 ?\) (d) Let \(A=4\) and plot \(x\) versus \(t\) Explain why this graph differs from those in parts (a) and (b). For what value of \(A\) does the transition take place?

The equation of motion of a spring-mass system with damping (see Section 3.8) is $$ m \frac{d^{2} u}{d t^{2}}+c \frac{d u}{d t}+k u=0 $$ where \(m, c,\) and \(k\) are positive. Write this second order equation as a system of two first order equations for \(x=u, y=d u / d t .\) Show that \(x=0, y=0\) is a critical point, and analyze the nature and stability of the critical point as a function of the parameters \(m, c,\) and \(k .\) A similar analysis can be applied to the electric circuit equation (see Section 3.8) $$L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=0.$$

Consider the linear system $$ d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y $$ where \(a_{11}, \ldots, a_{22}\) are real constants. Let \(p=a_{11}+a_{22}, q=a_{11} a_{22}-a_{12} a_{21},\) and \(\Delta=\) \(p^{2}-4 q\). Show that the critical point \((0,0)\) is a (a) Node if \(q>0\) and \(\Delta \geq 0\) (b) Saddle point if \(q<0\); (c) Spiral point if \(p \neq 0\) and \(\Delta<0\); (d) Center if \(p=0\) and \(q>0\). Hint: These conclusions can be obtained by studying the eigenvalues \(r_{1}\) and \(r_{2}\). It may also be helpful to establish, and then to use, the relations \(r_{1} r_{2}=q\) and \(r_{1}+r_{2}=p\).

Construct a suitable Liapunov function of the form \(a x^{2}+c y^{2}\) where \(a\) and \(c\) are to be determined. Then show that the critical point at the origin is of the indicated type. $$ d x / d t=-x^{3}+x y^{2}, \quad d y / d t=-2 x^{2} y-y^{3} ; \quad \text { asymptotically stable } $$

Consider the system of equations $$ d x / d t=y-x f(x, y), \quad d y / d t=-x-y f(x, y) $$ where \(f\) is continuous and has continuous first partial derivatives. Show that if \(f(x, y)>0\) in some neighborhood of the origin, then the origin is an asymptotically stable critical point, and if \(f(x, y)<0\) in some neighborhood of the origin, then the origin is an unstable critical point. Hint: Construct a Liapunov function of the form \(c\left(x^{2}+y^{2}\right) .\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free