Chapter 9: Problem 9
Consider the system $$ d x / d t=a x[1-(y / 2)], \quad d y / d t=b y[-1+(x / 3)] $$ where \(a\) and \(b\) are positive constants. Observe that this system is the same as in the example in the text if \(a=1\) and \(b=0.75 .\) Suppose the initial conditions are \(x(0)=5\) and \(y(0)=2\) (a) Let \(a=1\) and \(b=1 .\) Plot the trajectory in the phase plane and determine (or cstimate) the period of the oscillation. (b) Repeat part (a) for \(a=3\) and \(a=1 / 3,\) with \(b=1\) (c) Repeat part (a) for \(b=3\) and \(b=1 / 3,\) with \(a=1\) (d) Describe how the period and the shape of the trajectory depend on \(a\) and \(b\).