Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the system $$ d x / d t=a x[1-(y / 2)], \quad d y / d t=b y[-1+(x / 3)] $$ where \(a\) and \(b\) are positive constants. Observe that this system is the same as in the example in the text if \(a=1\) and \(b=0.75 .\) Suppose the initial conditions are \(x(0)=5\) and \(y(0)=2\) (a) Let \(a=1\) and \(b=1 .\) Plot the trajectory in the phase plane and determine (or cstimate) the period of the oscillation. (b) Repeat part (a) for \(a=3\) and \(a=1 / 3,\) with \(b=1\) (c) Repeat part (a) for \(b=3\) and \(b=1 / 3,\) with \(a=1\) (d) Describe how the period and the shape of the trajectory depend on \(a\) and \(b\).

Short Answer

Expert verified
Answer: The period and shape of the trajectory depend on the values of a and b such that varying these parameters results in different oscillation patterns. By plotting the trajectories for different values of a and b, we can observe how the period of oscillation and shape of the trajectory are affected. In general, changing the values of a and b will lead to changes in the period and trajectory shape, highlighting the critical role these parameters play in the oscillating system's behavior.

Step by step solution

01

Part (a) - Plot trajectories and estimate the period of oscillation for a=1 and b=1

To plot the trajectory, we can use a numerical solver to obtain the solution to the system of differential equations for the given initial conditions \(x(0) = 5\) and \(y(0) = 2\) and a =1, b=1. After obtaining the trajectory, we can visualize the result to analyze the period of oscillation.
02

Part (b) - Plot trajectories with a=3 and a=1/3, keeping b=1

To understand the effect of varying \(a\), we need to plot the trajectories in the phase plane for a=3 and a=1/3, making sure we keep b=1. We can repeat the same process as in part (a), but this time with different values of \(a\).
03

Part (c) - Plot trajectories with b=3 and b=1/3, keeping a=1

Now we want to analyze the effect of varying \(b\). To do this, we need to plot trajectories for b=3 and b=1/3, while keeping a=1 constant. We can repeat the same process as in previous parts, just changing the values of \(b\) instead.
04

Part (d) - Describe the dependence of period and trajectory shape on a and b

After plotting the trajectories for different values of \(a\) and \(b\), we can describe how the period and shape of the trajectory depend on these parameters. By analyzing the graphs, it is possible to draw conclusions about how varying \(a\) and \(b\) affect the period of oscillation and the shape of the trajectories.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each of Problems I through 6 can be interpreted as describing the interaction of two species with populations \(x\) and \(y .\) In each of these problems carry out the following steps. $$ \begin{array}{l}{\text { (a) Draw a direction field and describe how solutions seem to behave. }} \\ {\text { (b) Find the critical points. }} \\ {\text { (c) For each critical point find the corresponding linear system. Find the eigenvalues and }} \\ {\text { eigenvectors of the linear system; classify each critical point as to type, and determine }} \\ {\text { whether it is asymptotically stable, stable, or unstable. }}\end{array} $$ $$ \begin{array}{l}{\text { (d) Sketch the trajectories in the neighborhood of each critical point. }} \\ {\text { (c) Compute and plot enough trajectories of the given system to show clearly the behavior of }} \\ {\text { the solutions. }} \\ {\text { (f) Determine the limiting behavior of } x \text { and } y \text { as } t \rightarrow \infty \text { and interpret the results in terms of }} \\ {\text { the populations of the two species. }}\end{array} $$ $$ \begin{array}{l}{d x / d t=x(1.5-0.5 x-y)} \\ {d y / d t=y(2-y-1.125 x)}\end{array} $$

show that the given system has no periodic solutions other than constant solutions. $$ d x / d t=x+y+x^{3}-y^{2}, \quad d y / d t=-x+2 y+x^{2} y+y^{3} / 3 $$

Can be interpreted as describing the interaction of two species with population densities \(x\) and \(y .\) In each of these problems carry out the following steps. (a) Draw a direction field and describe how solutions seem to behave. (b) Find the critical points. (c) For each critical point find the corresponding linear system. Find the eigenvalues and eigenvectors of the linear system; classify each critical point as to type, and determine whether it is asymptotically stable, or unstable. (d) Sketch the trajectories in the neighborhood of each critical point. (e) Draw a phase portrait for the system. (f) Determine the limiting behavior of \(x\) and \(y\) as \(t \rightarrow \infty\) and interpret the results in terms of the populations of the two species. $$ \begin{array}{l}{d x / d t=x(1-0.5 x-0.5 y)} \\ {d y / d t=y(-0.25+0.5 x)}\end{array} $$

If \(x=r \cos \theta, y=r \sin \theta,\) show that \(y(d x / d t)-x(d y / d t)=-r^{2}(d \theta / d t)\)

an autonomous system is expressed in polar coordinates. Determine all periodic solutions, all limit cycles, and determine their stability characteristics. $$ d r / d t=r^{2}\left(1-r^{2}\right), \quad d \theta / d t=1 $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free