Chapter 9: Problem 6
an autonomous system is expressed in polar coordinates. Determine all periodic solutions, all limit cycles, and determine their stability characteristics. $$ d r / d t=r|r-2|(r-3), \quad d \theta / d t=-1 $$
Chapter 9: Problem 6
an autonomous system is expressed in polar coordinates. Determine all periodic solutions, all limit cycles, and determine their stability characteristics. $$ d r / d t=r|r-2|(r-3), \quad d \theta / d t=-1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA generalization of the undamped pendulum equation is $$ d^{2} u / d t^{2}+g(u)=0 $$ where \(g(0)=0, g(u)>0\) for \(00\) for \(u \neq 0,-k
an autonomous system is expressed in polar coordinates. Determine all periodic solutions, all limit cycles, and determine their stability characteristics. $$ d r / d t=r^{2}\left(1-r^{2}\right), \quad d \theta / d t=1 $$
(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}{2} & {-\frac{5}{2}} \\\ {\frac{9}{5}} & {-1}\end{array}\right) \mathbf{x}\)
Construct a suitable Liapunov function of the form \(a x^{2}+c y^{2}\) where \(a\) and \(c\) are to be determined. Then show that the critical point at the origin is of the indicated type. $$ d x / d t=-x^{3}+x y^{2}, \quad d y / d t=-2 x^{2} y-y^{3} ; \quad \text { asymptotically stable } $$
Each of Problems I through 6 can be interpreted as describing the interaction of two species with populations \(x\) and \(y .\) In each of these problems carry out the following steps. $$ \begin{array}{l}{\text { (a) Draw a direction field and describe how solutions seem to behave. }} \\ {\text { (b) Find the critical points. }} \\ {\text { (c) For each critical point find the corresponding linear system. Find the eigenvalues and }} \\ {\text { eigenvectors of the linear system; classify each critical point as to type, and determine }} \\ {\text { whether it is asymptotically stable, stable, or unstable. }}\end{array} $$ $$ \begin{array}{l}{\text { (d) Sketch the trajectories in the neighborhood of each critical point. }} \\ {\text { (c) Compute and plot enough trajectories of the given system to show clearly the behavior of }} \\ {\text { the solutions. }} \\ {\text { (f) Determine the limiting behavior of } x \text { and } y \text { as } t \rightarrow \infty \text { and interpret the results in terms of }} \\ {\text { the populations of the two species. }}\end{array} $$ $$ \begin{array}{l}{d x / d t=x(1.5-x-0.5 y)} \\ {d y / d t=y(2-0.5 y-1.5 x)}\end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.