Chapter 9: Problem 5
Consider the system of equations $$ d x / d t=y-x f(x, y), \quad d y / d t=-x-y f(x, y) $$ where \(f\) is continuous and has continuous first partial derivatives. Show that if \(f(x, y)>0\) in some neighborhood of the origin, then the origin is an asymptotically stable critical point, and if \(f(x, y)<0\) in some neighborhood of the origin, then the origin is an unstable critical point. Hint: Construct a Liapunov function of the form \(c\left(x^{2}+y^{2}\right) .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.