Chapter 9: Problem 27
In this problem we derive a formula for the natural period of an undamped nonlinear pendulum \([c=0 \text { in Eq. }(10) \text { of Section } 9.2]\). Suppose that the bob is pulled through a positive angle \(\alpha\) and then released with zero velocity. (a) We usually think of \(\theta\) and \(d \theta / d t\) as functions of \(t\). However, if we reverse the roles of \(t\) and \(\theta,\) we can regard \(t\) as a function of \(\theta,\) and consequently also think of \(d \theta / d t\) as a function of \(\theta .\) Then derive the following sequence of equations: $$ \begin{aligned} \frac{1}{2} m L^{2} \frac{d}{d \theta}\left[\left(\frac{d \theta}{d t}\right)^{2}\right] &=-m g L \sin \theta \\ \frac{1}{2} m\left(L \frac{d \theta}{d t}\right)^{2}=& m g L(\cos \theta-\cos \alpha) \\ d t &=-\sqrt{\frac{L}{2 g}} \frac{d \theta}{\sqrt{\cos \theta-\cos \alpha}} \end{aligned} $$ Why was the negative square root chosen in the last equation? (b) If \(T\) is the natural period of oscillation, derive the formula $$ \frac{T}{4}=-\sqrt{\frac{L}{2 g}} \int_{\alpha}^{0} \frac{d \theta}{\sqrt{\cos \theta-\cos \alpha}} $$ (c) By using the identities \(\cos \theta=1-2 \sin ^{2}(\theta / 2)\) and \(\cos \alpha=1-2 \sin ^{2}(\alpha / 2),\) followed by the change of variable \(\sin (\theta / 2)=k \sin \phi\) with \(k=\sin (\alpha / 2),\) show that $$ T=4 \sqrt{\frac{L}{g}} \int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}} $$ The integral is called the elliptic integral of the first kind. Note that the period depends on the ratio \(L / \mathrm{g}\) and also the initial displacement \(\alpha\) through \(k=\sin (\alpha / 2) .\) (d) By evaluating the integral in the expression for \(T\) obtain values for \(T\) that you can compare with the graphical estimates you obtained in Problem 21 .
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.