Chapter 9: Problem 20
Consider the linear system $$ d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y $$ where \(a_{11}, \ldots, a_{22}\) are real constants. Let \(p=a_{11}+a_{22}, q=a_{11} a_{22}-a_{12} a_{21},\) and \(\Delta=\) \(p^{2}-4 q\). Show that the critical point \((0,0)\) is a (a) Node if \(q>0\) and \(\Delta \geq 0\) (b) Saddle point if \(q<0\); (c) Spiral point if \(p \neq 0\) and \(\Delta<0\); (d) Center if \(p=0\) and \(q>0\). Hint: These conclusions can be obtained by studying the eigenvalues \(r_{1}\) and \(r_{2}\). It may also be helpful to establish, and then to use, the relations \(r_{1} r_{2}=q\) and \(r_{1}+r_{2}=p\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.