Chapter 9: Problem 19
In this problem we indicate how to show that the trajectories are ellipses when the eigen- values are pure imaginary. Consider the system $$ \left(\begin{array}{l}{x} \\\ {y}\end{array}\right)^{\prime}=\left(\begin{array}{ll}{a_{11}} & {a_{12}} \\\ {a_{21}} & {a_{22}}\end{array}\right)\left(\begin{array}{l}{x} \\\ {y}\end{array}\right) $$ (a) Show that the eigenvalues of the coefficient matrix are pure imaginary if and only if $$ a_{11}+a_{22}=0, \quad a_{11} a_{22}-a_{12} a_{21}>0 $$ (b) The trajectories of the system (i) can be found by converting Eqs. (i) into the single equation $$ \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{a_{21} x+a_{22} y}{a_{11} x+a_{12} y} $$ Use the first of Eqs. (ii) to show that Eq. (iii) is exact. (c) By integrating Eq. (iii) show that $$ a_{21} x^{2}+2 a_{22} x y-a_{12} y^{2}=k $$ where \(k\) is a constant. Use Eqs. (ii) to conclude that the graph of Eq. (iv) is always an ellipse. Hint: What is the discriminant of the quadratic form in Eq. (iv)?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.