Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The equation of motion of a spring-mass system with damping (see Section 3.8) is $$ m \frac{d^{2} u}{d t^{2}}+c \frac{d u}{d t}+k u=0 $$ where \(m, c,\) and \(k\) are positive. Write this second order equation as a system of two first order equations for \(x=u, y=d u / d t .\) Show that \(x=0, y=0\) is a critical point, and analyze the nature and stability of the critical point as a function of the parameters \(m, c,\) and \(k .\) A similar analysis can be applied to the electric circuit equation (see Section 3.8) $$L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=0.$$

Short Answer

Expert verified
Answer: The critical point of the given spring-mass system with damping is (x, y) = (0, 0). The stability of the critical point depends on the parameters m, c, and k through their effect on the discriminant Δ.

Step by step solution

01

Writing two first-order equations

Let \(x = u\) and \(y = \frac{du}{dt}\). So, we have \(\frac{dx}{dt} = \frac{du}{dt} = y\) and \(\frac{dy}{dt} = \frac{d^2u}{dt^2}\). Now, substitute these into the given equation: $$m\frac{d^2u}{dt^2} + c\frac{du}{dt} + ku = 0 \Rightarrow m\frac{dy}{dt} + cy + kx = 0$$ The system of two first-order equations is: $$ \begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -\frac{c}{m}y - \frac{k}{m}x \end{cases} $$ #Step 2: Find the critical points#
02

Finding critical points

The critical point is when both \(\frac{dx}{dt} = 0\) and \(\frac{dy}{dt} = 0\). $$ \begin{cases} y = 0 \\ -\frac{c}{m}y - \frac{k}{m}x = 0 \end{cases} $$ Since \(y = 0\), the second equation becomes \(-\frac{k}{m}x = 0\). Since m and k are positive, the critical point occurs when \(x = 0\). Thus, the critical point is \((x, y) = (0, 0)\). #Step 3: Analyze the nature and stability of the critical point#
03

Nature and stability of the critical point

To analyze the nature and stability of the critical point, we need to examine the eigenvalues of the Jacobian matrix of the linear system. Let \(f(x, y) = y\) and \(g(x, y) = -\frac{c}{m}y - \frac{k}{m}x\). The Jacobian matrix (J) is: $$ J = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x } & \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} $$ The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation: $$ \mathrm{det}(J - \lambda I) = \begin{vmatrix} -\lambda & 1 \\ -\frac{k}{m} & -\frac{c}{m} - \lambda \end{vmatrix} = 0 $$ Solving this, we get \(\lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0\). The nature and stability depend on the sign of the discriminant, \(\Delta = \left(\frac{c}{m}\right)^2 - 4\left(\frac{k}{m}\right)\): 1. If \(\Delta > 0\), the system has two distinct real eigenvalues, which implies that the critical point is a saddle point and is unstable. 2. If \(\Delta = 0\), the system has a repeated real eigenvalue, which implies that the critical point is a degenerate node and the nature cannot be determined from this analysis alone. 3. If \(\Delta < 0\), the system has complex conjugate eigenvalues, which implies that the critical point is a spiral point, and it is stable if the real part of the eigenvalues is negative, and unstable otherwise. The stability of the critical point \((0, 0)\) depends on the parameters m, c, and k through their effect on the discriminant \(\Delta\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In this problem we derive a formula for the natural period of an undamped nonlinear pendulum \([c=0 \text { in Eq. }(10) \text { of Section } 9.2]\). Suppose that the bob is pulled through a positive angle \(\alpha\) and then released with zero velocity. (a) We usually think of \(\theta\) and \(d \theta / d t\) as functions of \(t\). However, if we reverse the roles of \(t\) and \(\theta,\) we can regard \(t\) as a function of \(\theta,\) and consequently also think of \(d \theta / d t\) as a function of \(\theta .\) Then derive the following sequence of equations: $$ \begin{aligned} \frac{1}{2} m L^{2} \frac{d}{d \theta}\left[\left(\frac{d \theta}{d t}\right)^{2}\right] &=-m g L \sin \theta \\ \frac{1}{2} m\left(L \frac{d \theta}{d t}\right)^{2}=& m g L(\cos \theta-\cos \alpha) \\ d t &=-\sqrt{\frac{L}{2 g}} \frac{d \theta}{\sqrt{\cos \theta-\cos \alpha}} \end{aligned} $$ Why was the negative square root chosen in the last equation? (b) If \(T\) is the natural period of oscillation, derive the formula $$ \frac{T}{4}=-\sqrt{\frac{L}{2 g}} \int_{\alpha}^{0} \frac{d \theta}{\sqrt{\cos \theta-\cos \alpha}} $$ (c) By using the identities \(\cos \theta=1-2 \sin ^{2}(\theta / 2)\) and \(\cos \alpha=1-2 \sin ^{2}(\alpha / 2),\) followed by the change of variable \(\sin (\theta / 2)=k \sin \phi\) with \(k=\sin (\alpha / 2),\) show that $$ T=4 \sqrt{\frac{L}{g}} \int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}} $$ The integral is called the elliptic integral of the first kind. Note that the period depends on the ratio \(L / \mathrm{g}\) and also the initial displacement \(\alpha\) through \(k=\sin (\alpha / 2) .\) (d) By evaluating the integral in the expression for \(T\) obtain values for \(T\) that you can compare with the graphical estimates you obtained in Problem 21 .

By introducing suitable dimensionless variables, the system of nonlinear equations for the damped pendulum [Frqs. (8) of Section 9.3] can be written as $$ d x / d t=y, \quad d y / d t=-y-\sin x \text { . } $$ (a) Show that the origin is a critical point. (b) Show that while \(V(x, y)=x^{2}+y^{2}\) is positive definite, \(f(x, y)\) takes on both positive and negative values in any domain containing the origin, so that \(V\) is not a Liapunov function. Hint: \(x-\sin x>0\) for \(x>0\) and \(x-\sin x<0\) for \(x<0 .\) Consider these cases with \(y\) positive but \(y\) so small that \(y^{2}\) can be ignored compared to \(y .\) (c) Using the energy function \(V(x, y)=\frac{1}{2} y^{2}+(1-\cos x)\) mentioned in Problem \(6(b),\) show that the origin is a stable critical point. Note, however, that even though there is damping and we can epect that the origin is asymptotically stable, it is not possible to draw this conclusion using this Liapunov function. (d) To show asymptotic stability it is necessary to construct a better Liapunov function than the one used in part (c). Show that \(V(x, y)=\frac{1}{2}(x+y)^{2}+x^{2}+\frac{1}{2} y^{2}\) is such a Liapunov function, and conclude that the origin is an asymptotically stable critical point. Hint: From Taylor's formula with a remainder it follows that \(\sin x=x-\alpha x^{3} / 3 !,\) where \(\alpha\) depends on \(x\) but \(0<\alpha<1\) for \(-\pi / 2

Verify that \((0,0)\) is a critical point, show that the system is almost linear, and discuss the type and stability of the critical point \((0,0)\) by examining the corresponding linear system. $$ d x / d t=x-y^{2}, \quad d y / d t=x-2 y+x^{2} $$

We will prove part of Theorem 9.3 .2 : If the critical point \((0,0)\) of the almost linear system $$ d x / d t=a_{11} x+a_{12} y+F_{1}(x, y), \quad d y / d t=a_{21} x+a_{22} y+G_{1}(x, y) $$ is an asymptotically stable critical point of the corresponding linear system $$ d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y $$ then it is an asymptotically stable critical point of the almost linear system (i). Problem 12 deals with the corresponding result for instability. In this problem we show that the Liapunov function constructed in the preceding problem is also a Liapunov function for the almost linear system (i). We must show that there is some region containing the origin for which \(\hat{V}\) is negative definite. (a) Show that $$ \hat{V}(x, y)=-\left(x^{2}+y^{2}\right)+(2 A x+B y) F_{1}(x, y)+(B x+2 C y) G_{1}(x, y) $$ (b) Recall that \(F_{1}(x, y) / r \rightarrow 0\) and \(G_{1}(x, y) / r \rightarrow 0\) as \(r=\left(x^{2}+y^{2}\right)^{1 / 2} \rightarrow 0 .\) This means that given any \(\epsilon>0\) there exists a circle \(r=R\) about the origin such that for \(0

Verify that \((0,0)\) is a critical point, show that the system is almost linear, and discuss the type and stability of the critical point \((0,0)\) by examining the corresponding linear system. $$ d x / d t=x+y^{2}, \quad d y / d t=x+y $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free