Chapter 9: Problem 13
Prove Theorem 9.7 .2 by completing the following argument. According to Green's theorem in the plane, if \(C\) is a sufficiently smooth simple closed curve, and if \(F\) and \(G\) are continuous and have continuous first partial derivatives, then $$ \int_{C}[F(x, y) d y-G(x, y) d x]=\iint_{R}\left[F_{x}(x, y)+G_{y}(x, y)\right] d A $$ where \(C\) is traversed counterclockwise and \(R\) is the region enclosed by \(C .\) Assume that \(x=\phi(t), y=\psi(t)\) is a solution of the system ( 15) that is periodic with period \(T\). Let \(C\) be the closed curve given by \(x=\phi(t), y=\psi(t)\) for \(0 \leq t \leq T\). Show that for this curve the line integral is zero. Then show that the conclusion of Theorem 9.7 .2 must follow.