Chapter 9: Problem 13
Prove Theorem 9.7 .2 by completing the following argument. According to Green's theorem in the plane, if \(C\) is a sufficiently smooth simple closed curve, and if \(F\) and \(G\) are continuous and have continuous first partial derivatives, then $$ \int_{C}[F(x, y) d y-G(x, y) d x]=\iint_{R}\left[F_{x}(x, y)+G_{y}(x, y)\right] d A $$ where \(C\) is traversed counterclockwise and \(R\) is the region enclosed by \(C .\) Assume that \(x=\phi(t), y=\psi(t)\) is a solution of the system ( 15) that is periodic with period \(T\). Let \(C\) be the closed curve given by \(x=\phi(t), y=\psi(t)\) for \(0 \leq t \leq T\). Show that for this curve the line integral is zero. Then show that the conclusion of Theorem 9.7 .2 must follow.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.