Chapter 9: Problem 13
a. Sketch the nullclines and describe how the critical points move as \(\alpha\) increases. b. Find the critical points. c. Let \(\alpha=2\). Classify each critical point by investigating the corresponding approximate linear system. Draw a phase portrait in a rectangle containing the critical points. d. Find the bifurcation point \(\alpha_{0}\) at which the critical points coincide. Locate this critical point, and find the eigenvalues of the approximate linear system. Draw a phase portrait. e. For \(\alpha>\alpha_{0},\) there are no critical points. Choose such a value of \(\alpha\) and draw a phase portrait. $$x^{\prime}=-4 x+y+x^{2}, \quad y^{\prime}=-\alpha-x+y$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.