Problem 10
The system \\[ x^{\prime}=-y, \quad y^{\prime}=-\gamma y-x(x-0.15)(x-2) \\] results from an approximation to the Hodgkin-Huxley \(^{6}\) equations, which model the transmission of neural impulses along an axon. a. Find the critical points, and classify them by investigating the approximate linear system near each one. b. Draw phase portraits for \(\gamma=0.8\) and for \(\gamma=1.5\) c. Consider the trajectory that leaves the critical point (2, 0). Find the value of \(\gamma\) for which this trajectory ultimately approaches the origin as \(t \rightarrow \infty .\) Draw a phase portrait for this value of \(\gamma\).
Problem 10
Using Theorem \(9.7 .2,\) show that the linear autonomous system $$ d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y $$ does not have a periodic solution (other than \(x=0, y=0\) ) if \(a_{11}+a_{22} \neq 0\)
Problem 10
We will prove part of Theorem 9.3 .2 : If the critical point \((0,0)\) of the almost linear system $$ d x / d t=a_{11} x+a_{12} y+F_{1}(x, y), \quad d y / d t=a_{21} x+a_{22} y+G_{1}(x, y) $$ is an asymptotically stable critical point of the corresponding linear system $$ d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y $$ then it is an asymptotically stable critical point of the almost linear system (i). Problem 12 deals with the corresponding result for instability. Consider the linear system (ii). (a) Since \((0,0)\) is an asymptotically stable critical point, show that \(a_{11}+a_{22}<0\) and \(\left.a_{11} a_{22}-a_{12} a_{21}>0 . \text { (See Problem } 21 \text { of Section } 9.1 .\right)\) (b) Construct a Liapunov function \(V(x, y)=A x^{2}+B x y+C y^{2}\) such that \(V\) is positive definite and \(\hat{V}\) is negative definite. One way to ensure that \(\hat{V}\) is negative definite is to choose \(A, B,\) and \(C\) so that \(\hat{V}(x, y)=-x^{2}-y^{2} .\) Show that this leads to the result $$ \begin{array}{l}{A=-\frac{a_{21}^{2}+a_{22}^{2}+\left(a_{11} a_{22}-a_{12} a_{21}\right)}{2 \Delta}, \quad B=\frac{a_{12} a_{22}+a_{11} a_{21}}{\Delta}} \\\ {C=-\frac{a_{11}^{2}+a_{12}^{2}+\left(a_{11} a_{22}-a_{12} a_{21}\right)}{2 \Delta}}\end{array} $$ where \(\Delta=\left(a_{11}+a_{22}\right)\left(a_{11} a_{22}-a_{12} a_{21}\right)\) (c) Using the result of part (a) show that \(A>0\) and then show (several steps of algebra are required) that $$ 4 A C-B^{2}=\frac{\left(a_{11}^{2}+a_{12}^{2}+a_{21}^{2}+a_{22}^{2}\right)\left(a_{11} a_{22}-a_{12} a_{21}\right)+2\left(a_{11} a_{22}-a_{12} a_{21}\right)^{2}}{\Delta^{2}}>0 $$ Thus by Theorem 9.6.4, \(V\) is positive definite.
Problem 10
(a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. $$ d x / d t=x+x^{2}+y^{2}, \quad d y / d t=y-x y $$
Problem 10
For certain \(r\) intervals, or windows, the Lorenz equations exhibit a period- doubling property similar to that of the logistic difference equation discussed in Section \(2.9 .\) Careful calculations may reveal this phenomenon. Now consider values of \(r\) slightly larger than those in Problem 9. (a) Plot trajectories of the Lorenz equations for values of \(r\) between 100 and \(100.78 .\) You should observe a steady periodic solution for this range of \(r\) values. (b) Plot trajectories for values of \(r\) between 100.78 and \(100.8 .\) Determine as best you can how and when the periodic trajectory breaks up.
Problem 10
(a) Find all the critical points (equilibrium solutions). (b) Use a computer to draw a direction field and portrait for the system. (c) From the plot(s) in part (b) determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type. $$ d x / d t=(2+x)(y-x), \quad d y / d t=y\left(2+x-x^{2}\right) $$
Problem 10
(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{rr}{1} & {2} \\ {-5} & {-1}\end{array}\right) \mathbf{x}\)
Problem 11
(a) Find all the critical points (equilibrium solutions). (b) Use a computer to draw a direction field and portrait for the system. (c) From the plot(s) in part (b) determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type. $$ d x / d t=-x+2 x y, \quad d y / d t=y-x^{2}-y^{2} $$
Problem 11
We will prove part of Theorem 9.3 .2 : If the critical point \((0,0)\) of the
almost linear system
$$
d x / d t=a_{11} x+a_{12} y+F_{1}(x, y), \quad d y / d t=a_{21} x+a_{22}
y+G_{1}(x, y)
$$
is an asymptotically stable critical point of the corresponding linear system
$$
d x / d t=a_{11} x+a_{12} y, \quad d y / d t=a_{21} x+a_{22} y
$$
then it is an asymptotically stable critical point of the almost linear system
(i). Problem 12 deals with the corresponding result for instability.
In this problem we show that the Liapunov function constructed in the
preceding problem is also a Liapunov function for the almost linear system
(i). We must show that there is some region containing the origin for which
\(\hat{V}\) is negative definite.
(a) Show that
$$
\hat{V}(x, y)=-\left(x^{2}+y^{2}\right)+(2 A x+B y) F_{1}(x, y)+(B x+2 C y)
G_{1}(x, y)
$$
(b) Recall that \(F_{1}(x, y) / r \rightarrow 0\) and \(G_{1}(x, y) / r
\rightarrow 0\) as \(r=\left(x^{2}+y^{2}\right)^{1 / 2} \rightarrow 0 .\) This
means that given any \(\epsilon>0\) there exists a circle \(r=R\) about the origin
such that for \(0
Problem 11
(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{rr}{-1} & {0} \\ {0} & {-1}\end{array}\right) \mathbf{x}\)