Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 6

A generalization of the undamped pendulum equation is $$ d^{2} u / d t^{2}+g(u)=0 $$ where \(g(0)=0, g(u)>0\) for \(00\) for \(u \neq 0,-k

Problem 6

(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}{2} & {-5} \\ {1} & {-2}\end{array}\right) \mathbf{x}\)

Problem 7

(a) Find all the critical points (equilibrium solutions). (b) Use a computer to draw a direction field and portrait for the system. (c) From the plot(s) in part (b) determine whether each critical point is asymptotically stable, stable, or unstable, and classify it as to type. $$ d x / d t=x-x^{2}-x y, \quad d y / d t=\frac{1}{2} y-\frac{1}{4} y^{2}-\frac{3}{4} x y $$

Problem 7

If \(x=r \cos \theta, y=r \sin \theta,\) show that \(y(d x / d t)-x(d y / d t)=-r^{2}(d \theta / d t)\)

Problem 7

By introducing suitable dimensionless variables, the system of nonlinear equations for the damped pendulum [Frqs. (8) of Section 9.3] can be written as $$ d x / d t=y, \quad d y / d t=-y-\sin x \text { . } $$ (a) Show that the origin is a critical point. (b) Show that while \(V(x, y)=x^{2}+y^{2}\) is positive definite, \(f(x, y)\) takes on both positive and negative values in any domain containing the origin, so that \(V\) is not a Liapunov function. Hint: \(x-\sin x>0\) for \(x>0\) and \(x-\sin x<0\) for \(x<0 .\) Consider these cases with \(y\) positive but \(y\) so small that \(y^{2}\) can be ignored compared to \(y .\) (c) Using the energy function \(V(x, y)=\frac{1}{2} y^{2}+(1-\cos x)\) mentioned in Problem \(6(b),\) show that the origin is a stable critical point. Note, however, that even though there is damping and we can epect that the origin is asymptotically stable, it is not possible to draw this conclusion using this Liapunov function. (d) To show asymptotic stability it is necessary to construct a better Liapunov function than the one used in part (c). Show that \(V(x, y)=\frac{1}{2}(x+y)^{2}+x^{2}+\frac{1}{2} y^{2}\) is such a Liapunov function, and conclude that the origin is an asymptotically stable critical point. Hint: From Taylor's formula with a remainder it follows that \(\sin x=x-\alpha x^{3} / 3 !,\) where \(\alpha\) depends on \(x\) but \(0<\alpha<1\) for \(-\pi / 2

Problem 7

Consider the competition between bluegill and redear mentioned in Problem 6. Suppose that \(\epsilon_{2} / \alpha_{2}>\epsilon_{1} / \sigma_{1}\) and \(\epsilon_{1} / \alpha_{1}>\epsilon_{2} / \sigma_{2}\) so, as shown in the text, there is a stable equilibrium point at which both species can coexist. It is convenient to rewrite the equations of Problem 6 in terms of the carrying capacity of the pond for bluegill \(\left(B=\epsilon_{1} / \sigma_{1}\right)\) in the absence of redear and its carrying capacity for redear \(\left(R=\epsilon_{2} / \sigma_{2}\right)\) in the absence of bluegill. a. Show that the equations of Problem 6 take the form $$\frac{d x}{d t}=\epsilon_{1} x\left(1-\frac{1}{B} x-\frac{\gamma_{1}}{B} y\right), \frac{d y}{d t}=\epsilon_{2} y\left(1-\frac{1}{R} y-\frac{\gamma_{2}}{R} x\right)$$ where \(\gamma_{1}=\alpha_{1} / \sigma_{1}\) and \(\gamma_{2}=\alpha_{2} / \sigma_{2} .\) Determine the coexistence equilibrium point \((X, Y)\) in terms of \(B, R, \gamma_{1},\) and \(\gamma_{2}\) b. Now suppose that an angler fishes only for bluegill with the effect that \(B\) is reduced. What effect does this have on the equilibrium populations? Is it possible, by fishing, to reduce the population of bluegill to such a level that they will die out?

Problem 7

(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}{3} & {-2} \\ {4} & {-1}\end{array}\right) \mathbf{x}\)

Problem 8

(a) Show that the system $$ d x / d t=-y+x f(r) / r, \quad d y / d t=x+y f(r) / r $$ has periodic solutions corresponding to the zeros of \(f(r) .\) What is the direction of motion on the closed trajectories in the phase plane? (b) Let \(f(r)=r(r-2)^{2}\left(r^{2}-4 r+3\right)\). Determine all periodic solutions and determine their stability characteristics.

Problem 8

Carry out the indicated investigations of the Lorenz equations. (a) For \(r=21\) plot \(x\) versus \(t\) for the solutions starting at the initial points \((3,8,0),\) \((5,5,5),\) and \((5,5,10) .\) Use a \(t\) interval of at least \(0 \leq t \leq 30 .\) Compare your graphs with those in Figure \(9.8 .4 .\) (b) Repeat the calculation in part (a) for \(r=22, r=23,\) and \(r=24 .\) Increase the \(t\) interval as necessary so that you can determine when each solution begins to converge to one of the critical points. Record the approximate duration of the chaotic transient in each case. Describe how this quantity depends on the value of \(r\). (c) Repeat the calculations in parts (a) and (b) for values of \(r\) slightly greater than 24 . Try to estimate the value of \(r\) for which the duration of the chaotic transient approaches infinity.

Problem 8

(a) Determine all critical points of the given system of equations. (b) Find the corresponding linear system near each critical point. (c) Find the eigenalues of each linear system. What conclusions can you then draw about the nonlinear system? (d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system. $$ d x / d t=x-x^{2}-x y, \quad d y / d t=\frac{1}{2} y-\frac{1}{4} y^{2}-\frac{3}{4} x y $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks