Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

Can be interpreted as describing the interaction of two species with population densities \(x\) and \(y .\) In each of these problems carry out the following steps. (a) Draw a direction field and describe how solutions seem to behave. (b) Find the critical points. (c) For each critical point find the corresponding linear system. Find the eigenvalues and eigenvectors of the linear system; classify each critical point as to type, and determine whether it is asymptotically stable, or unstable. (d) Sketch the trajectories in the neighborhood of each critical point. (e) Draw a phase portrait for the system. (f) Determine the limiting behavior of \(x\) and \(y\) as \(t \rightarrow \infty\) and interpret the results in terms of the populations of the two species. $$ \begin{array}{l}{d x / d t=x(1.5-0.5 y)} \\ {d y / d t=y(-0.5+x)}\end{array} $$

Problem 1

sketch the trajectory corresponding to the solution satisfying the specified initial conditions, and indicate the direction of motion for increasing t. $$ d x / d t=-x, \quad d y / d t=-2 y ; \quad x(0)=4, \quad y(0)=2 $$

Problem 1

(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}{3} & {-2} \\ {2} & {-2}\end{array}\right) \mathbf{x}\)

Problem 1

Each of Problems I through 6 can be interpreted as describing the interaction of two species with populations \(x\) and \(y .\) In each of these problems carry out the following steps. $$ \begin{array}{l}{\text { (a) Draw a direction field and describe how solutions seem to behave. }} \\ {\text { (b) Find the critical points. }} \\ {\text { (c) For each critical point find the corresponding linear system. Find the eigenvalues and }} \\ {\text { eigenvectors of the linear system; classify each critical point as to type, and determine }} \\ {\text { whether it is asymptotically stable, stable, or unstable. }}\end{array} $$ $$ \begin{array}{l}{\text { (d) Sketch the trajectories in the neighborhood of each critical point. }} \\ {\text { (c) Compute and plot enough trajectories of the given system to show clearly the behavior of }} \\ {\text { the solutions. }} \\ {\text { (f) Determine the limiting behavior of } x \text { and } y \text { as } t \rightarrow \infty \text { and interpret the results in terms of }} \\ {\text { the populations of the two species. }}\end{array} $$ $$ \begin{array}{l}{d x / d t=x(1.5-x-0.5 y)} \\ {d y / d t=y(2-y-0.75 x)}\end{array} $$

Problem 1

Construct a suitable Liapunov function of the form \(a x^{2}+c y^{2}\) where \(a\) and \(c\) are to be determined. Then show that the critical point at the origin is of the indicated type. $$ d x / d t=-x^{3}+x y^{2}, \quad d y / d t=-2 x^{2} y-y^{3} ; \quad \text { asymptotically stable } $$

Problem 1

an autonomous system is expressed in polar coordinates. Determine all periodic solutions, all limit cycles, and determine their stability characteristics. $$ d r / d t=r^{2}\left(1-r^{2}\right), \quad d \theta / d t=1 $$

Problem 1

Verify that \((0,0)\) is a critical point, show that the system is almost linear, and discuss the type and stability of the critical point \((0,0)\) by examining the corresponding linear system. $$ d x / d t=x-y^{2}, \quad d y / d t=x-2 y+x^{2} $$

Problem 2

sketch the trajectory corresponding to the solution satisfying the specified initial conditions, and indicate the direction of motion for increasing t. $$ d x / d t=-x, \quad d y / d t=2 y ; \quad x(0)=4, \quad y(0)=2 \quad \text { and } \quad x(0)=4, \quad y(0)=0 $$

Problem 2

(a) Find the eigenvalues and eigenvectors. (b) Classify the critical point \((0,0)\) as to type and determine whether it is stable, asymptotically stable, or unstable. (c) Sketch several trajectories in the phase plane and also sketch some typical graphs of \(x_{1}\) versus \(t .\) (d) Use a computer to plot accurately the curves requested in part (c). \(\frac{d \mathbf{x}}{d t}=\left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) \mathbf{x}\)

Problem 2

Verify that \((0,0)\) is a critical point, show that the system is almost linear, and discuss the type and stability of the critical point \((0,0)\) by examining the corresponding linear system. $$ d x / d t=-x+y+2 x y, \quad d y / d t=-4 x-y+x^{2}-y^{2} $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks