Consider the initial value problem \(x^{\prime}=f(t, x, y)\) and
\(y^{\prime}=g(t, x, y)\) with \(x\left(t_{0}\right)=x_{0}\) and
\(y\left(t_{0}\right)=y_{0} .\) The generalization of the Adams-Moulton
predictor-corrector method of Section 8.4 is
$$
\begin{array}{l}{x_{n+1}=x_{n}+\frac{1}{24} h\left(55 f_{n}-59 f_{n-1}+37
f_{n-2}-9 f_{n-3}\right)} \\ {y_{n+1}=y_{n}+\frac{1}{24} h\left(55 g_{n}-59
g_{n-1}+37 g_{n-2}-9 g_{n-1}\right)}\end{array}
$$
and
$$
\begin{array}{l}{x_{n+1}=x_{n}+\frac{1}{24} h\left(9 f_{n+1}+19 f_{n}-5
f_{n-1}+f_{n-2}\right)} \\ {y_{n+1}=y_{n}+\frac{1}{24} h\left(9 g_{n+1}+19
g_{n}-5 g_{n-1}+g_{n-2}\right)}\end{array}
$$
Determine an approximate value of the solution at \(t=0.4\) for the example
initial value
problem \(x^{\prime}=x-4 y, y^{\prime}=-x+y\) with \(x(0)=1, y(0)=0\). Take \(h=0.1
.\) Correct the predicted value once. For the values of \(x_{1}, \ldots, y_{3}\)
use the values of the exact solution rounded to six digits: \(x_{1}=1.12883,
x_{2}=1.32042, x_{3}=1.60021, y_{1}=-0.110527, y_{2}=\) \(-0.250847,\) and
\(y_{3}=-0.429696\)