Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

In each of Problems 1 through 6 find approximate values of the solution of the given initial value problem at \(t=0.1,0.2,0.3,\) and \(0.4 .\) Compare the results with those obtained by using other methods and with the exact solution (if available). (a) Use the Runge-Kutta method with \(h=0.1\) (b) Use the Runge-Kutta method with \(h=0.05\) $$ y^{\prime}=3+t-y, \quad y(0)=1 $$

Problem 1

To obtain some idea of the possible dangers of small errors in the initial conditions, such as those due to round-off, consider the initial value problem $$y^{\prime}=t+y-3, \quad y(0)=2$$ (a) Show that the solution is \(y=\phi_{1}(t)=2-t\) (b) Suppose that in the initial condition a mistake is made and 2.001 is used instead of \(2 .\) Determine the solution \(y=\phi_{2}(t)\) in this case, and compare the difference \(\phi_{2}(t)-\phi_{1}(t)\) at \(t=1\) and as \(t \rightarrow \infty\).

Problem 2

Consider the initial value problem $$ y^{\prime}=t^{2}+e^{y}, \quad y(0)=0 $$ Using the Runge-Kutta method with step size \(h,\) we obtain the results in Table \(8.5 .\) These results suggest that the solution has a vertical asymptote between \(t=0.9\) and \(t=1.0 .\) (a) Show that for \(0 \leq t \leq 1\) the solution \(y=\phi(t)\) of the problem (i) satisfies $$ \phi_{2}(t) \leq \phi(t) \leq \phi_{1}(t) $$ where \(y=\phi_{1}(t)\) is the solution of $$ y^{\prime}=1+e^{y}, \quad y(0)=0 $$ and \(y=\phi_{2}(t)\) is the solution of $$ y^{\prime}=e^{y}, \quad y(0)=0 $$ (b) Determine \(\phi_{1}(t)\) and \(\phi_{2}(t) .\) Then show that \(\phi(t) \rightarrow \infty\) for some \(t\) between \(t=\ln 2 \cong\) 0.69315 and \(t=1 .\) (c) Solve the differential equations \(y^{\prime}=e^{y}\) and \(y^{\prime}=1+e^{y},\) respectively, with the initial condition \(y(0.9)=3.4298 .\) Use the results to show that \(\phi(t) \rightarrow \infty\) when \(t \cong 0.932 .\)

Problem 3

In each of Problems 1 through 6 find approximate values of the solution of the given initial value problem at \(t=0.1,0.2,0.3,\) and \(0.4 .\) Compare the results with those obtained by using other methods and with the exact solution (if available). (a) Use the Runge-Kutta method with \(h=0.1\) (b) Use the Runge-Kutta method with \(h=0.05\) $$ y^{\prime}=2 y-3 t, \quad y(0)=1 $$

Problem 4

find approximate values of the solution of the given initial value problem at \(t=0.1,0.2,0.3,\) and 0.4 (a) Use the Euler method with \(h=0.05\) (b) Use the Euler method with \(h=0.025\). (c) Use the backward Euler method with \(h=0.05\) (d) Use the backward Euler method with \(h=0.025\) $$ y^{\prime}=2 t+e^{-t y}, \quad y(0)=1 $$

Problem 4

Consider the initial value problem $$ y^{\prime}=-10 y+2.5 t^{2}+0.5 t, \quad y(0)=4 $$ (a) Find the solution \(y=\phi(t)\) and draw its graph for \(0 \leq t \leq 5\). (b) The stability analysis in the text suggests that for this problem the Euler method is stable only for \(h<0.2 .\) Confirm that this is true by applying the Euler method to this problem for \(0 \leq t \leq 5\) with step sizes near \(0.2 .\) (c) Apply the Runge-Kutta method to this problem for \(0 \leq t \leq 5\) with various step sizes. What can you conclude about the stability of this method? (d) Apply the backward Euler method to this problem for \(0 \leq t \leq 5\) with various step sizes. What step size is needed in order that the error at \(t=5\) is less than \(0.01 ?\)

Problem 5

(a) Find a formula for the solution of the initial value problem, and note that it is independent of \(\lambda\). (b) Use the Runge-Kuta method with \(h=0.01\) to compute approximate values of the solution for \(0 \leq t \leq 1\) for various values of \(\lambda\) such as \(\lambda=1,10,20,\) and 50 , and 50 , inters of the (c) Explain the differences, if any, between the exact solution and the numerical approximations. \(y^{\prime}-\lambda y=1-\lambda t, \quad y(0)=0\)

Problem 6

(a) Find a formula for the solution of the initial value problem, and note that it is independent of \(\lambda\). (b) Use the Runge-Kuta method with \(h=0.01\) to compute approximate values of the solution for \(0 \leq t \leq 1\) for various values of \(\lambda\) such as \(\lambda=1,10,20,\) and 50 , and 50 , inters of the (c) Explain the differences, if any, between the exact solution and the numerical approximations. \(y^{\prime}-\lambda y=2 t-\lambda t^{2}, \quad y(0)=0\)

Problem 6

Determine an approximate value of the solution at \(t=0.4\) and \(t=0.5\) using the specified method. For starting values use the values given by the Runge- Kutta method; see Problems 1 through 6 of Section 8.3 . Compare the results of the various methods with each other and with the actual solution (if available). $$ \begin{array}{l}{\text { (a) Use the fourth order predictor-corrector method with } h=0.1 . \text { Use the corrector }} \\ {\text { formula once at each step. }} \\ {\text { (b) Use the fourth order Adams-Moulton method with } h=0.1} \\ {\text { (c) Use the fourth order backward differentiation method with } h=0.1 .}\end{array} $$ $$ y^{\prime}=\left(t^{2}-y^{2}\right) \sin y, \quad y(0)=-1 $$

Problem 6

In each of Problems 1 through 6 find approximate values of the solution of the given initial value problem at \(t=0.1,0.2,0.3,\) and \(0.4 .\) Compare the results with those obtained by using other methods and with the exact solution (if available). (a) Use the Runge-Kutta method with \(h=0.1\) (b) Use the Runge-Kutta method with \(h=0.05\) $$ y^{\prime}=\left(t^{2}-y^{2}\right) \sin y, \quad y(0)=-1 $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks