Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

find a fundamental matrix for the given system of equations. In each case also find the fundamental matrix \(\mathbf{\Phi}(t)\) satisfying \(\Phi(0)=\mathbf{1}\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{1} & {1} & {1} \\ {2} & {1} & {-1} \\ {-8} & {-5} & {-3}\end{array}\right) \mathbf{x} $$

Short Answer

Expert verified
Based on the given information, determine the fundamental matrix \(\mathbf{\Phi}(t)\), where \(\mathbf{\Phi}(0) = \mathbf{1}\). Solution: The fundamental matrix \(\mathbf{\Phi}(t)\) is given by: $$\mathbf{\Phi}(t)=\frac{1}{2}\left(\begin{array}{ccc}{1} & {1} & {1} \\\ {1} & {-1} & {1} \\\ {-2} & {1} & {-1}\end{array}\right)\left(\begin{array}{ccc}{e^{-t}} & {0} & {0} \\\ {0} & {e^t} & {0} \\\ {0} & {0} & {e^{-3t}}\end{array}\right) \left(\begin{array}{ccc}{1} & {0} & {0} \\\ {0} & {1} & {0} \\\ {0} & {0} & {1}\end{array}\right)$$

Step by step solution

01

Determine the eigenvalues and eigenvectors of the given matrix

To find eigenvalues and their respective eigenvectors, we need to solve the following equation: $$\text{det} \ |A - \lambda I| = 0$$ where \(A\) is the given matrix and \(\lambda\) represents eigenvalues. The given matrix is: $$A=\left(\begin{array}{rrr}{1} & {1} & {1} \\\ {2} & {1} & {-1} \\\ {-8} & {-5} & {-3}\end{array}\right)$$ The equation becomes: $$\text{det} \ \left(\begin{array}{ccc}{1-\lambda} & {1} & {1} \\\ {2} & {1-\lambda} & {-1} \\\ {-8} & {-5} & {-3-\lambda}\end{array}\right) = 0$$ Solve the determinant to find the eigenvalues. After solving the determinant, we get the eigenvalues: \(\lambda_1 = -1\), \(\lambda_2 = 1\), and \(\lambda_3 = -3\). Now, find the eigenvectors corresponding to each eigenvalue. For \(\lambda_1 = -1\): $$\left(\begin{array}{ccc}{2} & {1} & {1} \\\ {2} & {2} & {-1} \\\ {-8} & {-5} & {-2}\end{array}\right)\mathbf{x} = \mathbf{0}$$ The eigenvector is: \(\mathbf{x}_1 = (1,1,-2)^T\) For \(\lambda_2 = 1\): $$\left(\begin{array}{ccc}{0} & {1} & {1} \\\ {2} & {0} & {-1} \\\ {-8} & {-5} & {-4}\end{array}\right)\mathbf{x} = \mathbf{0}$$ The eigenvector is: \(\mathbf{x}_2 = (1,-1,1)^T\) For \(\lambda_3 = -3\): $$\left(\begin{array}{ccc}{4} & {1} & {1} \\\ {2} & {4} & {-1} \\\ {-8} & {-5} & {0}\end{array}\right)\mathbf{x} = \mathbf{0}$$ The eigenvector is: \(\mathbf{x}_3 = (1,1,-1)^T\)
02

Find the matrix exponential of the given matrix

Using the eigenvectors, we can form a matrix \(X=[\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3]\) which contains eigenvectors as its columns. We then find a diagonal matrix \(\Lambda\) with the eigenvalues as its elements along the diagonal, that is, $$X=\left(\begin{array}{ccc}1 & 1 & 1 \\\ 1 & -1 & 1 \\\ -2 & 1 & -1\end{array}\right), \quad \Lambda=\left(\begin{array}{ccc}-1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & -3\end{array}\right)$$ Now, we can compute the matrix exponential of \(A\) as follows, $$\Phi(t) = e^{A t} = X e^{\Lambda t}X^{-1}$$ where the exponential of a diagonal matrix is calculated by taking the exponential of all the diagonal elements separately. Thus we get, $$e^{\Lambda t} = \left(\begin{array}{ccc}{e^{-t}} & {0} & {0} \\\ {0} & {e^t} & {0} \\\ {0} & {0} & {e^{-3t}}\end{array}\right)$$ Now, we need to calculate \(X^{-1}\), which is the inverse of matrix \(X\). $$X^{-1} = \frac{1}{2}\left(\begin{array}{rrr}{-1} & {1} & {1} \\\ {2} & {0} & {1} \\\ {-1} & {-1} & {0}\end{array}\right)$$ Finally, calculate \(\Phi(t)\): $$\Phi(t) = Xe^{\Lambda t}X^{-1} = \left(\begin{array}{ccc}1 & 1 & 1 \\\ 1 & -1 & 1 \\\ -2 & 1 & -1\end{array}\right)\left(\begin{array}{ccc}{e^{-t}} & {0} & {0} \\\ {0} & {e^t} & {0} \\\ {0} & {0} & {e^{-3t}}\end{array}\right) \frac{1}{2}\left(\begin{array}{rrr}{-1} & {1} & {1} \\\ {2} & {0} & {1} \\\ {-1} & {-1} & {0}\end{array}\right)$$
03

Find the desired fundamental matrix satisfying \(\Phi(0)=\mathbf{1}\)

The fundamental matrix fulfilling this condition can be obtained by evaluating \(\Phi(t)\) at \(t=0\) and solving for the constant matrix \(C\). Then multiply \(\Phi(t)\) by the constant matrix \(C\). First, calculate \(\Phi(0)\): $$\Phi(0) = \left(\begin{array}{ccc}1 & 1 & 1 \\\ 1 & -1 & 1 \\\ -2 & 1 & -1\end{array}\right)\left(\begin{array}{ccc}{1} & {0} & {0} \\\ {0} & {1} & {0} \\\ {0} & {0} & {1}\end{array}\right) \frac{1}{2}\left(\begin{array}{rrr}{-1} & {1} & {1} \\\ {2} & {0} & {1} \\\ {-1} & {-1} & {0}\end{array}\right)$$ $$\Phi(0) = \left(\begin{array}{ccc}{1} & {1} & {1} \\\ {1} & {-1} & {1} \\\ {-2} & {1} & {-1}\end{array}\right)\frac{1}{2}\left(\begin{array}{rrr}{-1} & {1} & {1} \\\ {2} & {0} & {1} \\\ {-1} & {-1} & {0}\end{array}\right)$$ $$\Phi(0) = \left(\begin{array}{ccc}{0} & {0} & {2} \\\ {0} & {2} & {0} \\\ {0} & {0} & {2}\end{array}\right)$$ Now, to find the constant matrix \(C\), we need \(\Phi(0)\) to be equal to the identity matrix: $$\Phi(0)C = \mathbf{1}$$ $$\left(\begin{array}{ccc}{0} & {0} & {2} \\\ {0} & {2} & {0} \\\ {0} & {0} & {2}\end{array}\right)C = \left(\begin{array}{ccc}{1} & {0} & {0} \\\ {0} & {1} & {0} \\\ {0} & {0} & {1}\end{array}\right)$$ Solve for \(C\): $$C = \frac{1}{2}\left(\begin{array}{ccc}{1} & {0} & {0} \\\ {0} & {1} & {0} \\\ {0} & {0} & {1}\end{array}\right)$$ Finally, compute the desired fundamental matrix as \(\Phi(t)C\): $$\mathbf{\Phi}(t)=\Phi(t)C=\frac{1}{2}\left(\begin{array}{ccc}{1} & {1} & {1} \\\ {1} & {-1} & {1} \\\ {-2} & {1} & {-1}\end{array}\right)\left(\begin{array}{ccc}{e^{-t}} & {0} & {0} \\\ {0} & {e^t} & {0} \\\ {0} & {0} & {e^{-3t}}\end{array}\right) \left(\begin{array}{ccc}{1} & {0} & {0} \\\ {0} & {1} & {0} \\\ {0} & {0} & {1}\end{array}\right)$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In this problem we show that the eigenvalues of a Hermitian matrix \(\Lambda\) are real. Let \(x\) be an eigenvector corresponding to the eigenvalue \(\lambda\). (a) Show that \((A x, x)=(x, A x)\). Hint: See Problem 31 . (b) Show that \(\lambda(x, x)=\lambda(x, x)\), Hint: Recall that \(A x=\lambda x\). (c) Show that \(\lambda=\lambda\); that is, the cigenvalue \(\lambda\) is real.

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{lll}{3} & {2} & {4} \\ {2} & {0} & {2} \\ {4} & {2} & {3}\end{array}\right) $$

Solve the given initial value problem. Describe the behavior of the solution as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{cc}{-2} & {1} \\ {-5} & {4}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}{1} \\ {3}\end{array}\right) $$

Verify that the given vector is the general solution of the corresponding homogeneous system, and then solve the non-homogeneous system. Assume that \(t>0 .\) $$ t \mathrm{x}^{\prime}=\left(\begin{array}{cc}{3} & {-2} \\ {2} & {-2}\end{array}\right) \mathrm{x}+\left(\begin{array}{c}{-2 t} \\\ {t^{4}-1}\end{array}\right), \quad \mathbf{x}^{(c)}=c_{1}\left(\begin{array}{c}{1} \\ {2}\end{array}\right) t^{-1}+c_{2}\left(\begin{array}{c}{2} \\ {1}\end{array}\right) t^{2} $$

Show that if \(\lambda_{1}\) and \(\lambda_{2}\) are eigenvalues of a Hermitian matrix \(\mathbf{A},\) and if \(\lambda_{1} \neq \lambda_{2},\) then the corresponding eigenvectors \(\mathbf{x}^{(1)}\) and \(\mathbf{x}^{(2)}\) are orthogonal. Hint: Use the results of Problems 31 and 32 to show that \(\left(\lambda_{1}-\lambda_{2}\right)\left(\mathbf{x}^{(1)}, \mathbf{x}^{(1)}\right)=0\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free