Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\mathbf{x}=\left(\begin{array}{c}{2} \\ {3 i} \\\ {1-i}\end{array}\right)\) and \(\mathbf{y}=\left(\begin{array}{c}{-1+i} \\ {2} \\\ {3-i}\end{array}\right),\) find (a) \(\mathbf{x}^{T} \mathbf{y}\) (b) \(\mathbf{y}^{T} \mathbf{y}\) (c) \((\mathbf{x}, \mathbf{y})\) (d) \(\quad(\mathbf{y}, \mathbf{y})\)

Short Answer

Expert verified
In summary, we have found the following: (a) \(\mathbf{x}^{T} \mathbf{y} = -1+5i\) (b) \(\mathbf{y}^{T} \mathbf{y} = 13-8i\) (c) \((\mathbf{x}, \mathbf{y}) = -5-6i\) (d) \((\mathbf{y}, \mathbf{y}) = 14+8i\)

Step by step solution

01

(a) Find \(\mathbf{x}^T \mathbf{y}\)

To find \(\mathbf{x}^T \mathbf{y}\), perform the standard dot product of \(\mathbf{x}\) and \(\mathbf{y}\): \(\mathbf{x}^T \mathbf{y}=(2)(-1+i)+(3i)(2)+(1-i)(3-i)\) Calculate the result: \(\mathbf{x}^T \mathbf{y}=-2+2i+6i+2-3i+3+1-i\) Therefore, \(\mathbf{x}^T \mathbf{y}=-1+5i.\)
02

(b) Find \(\mathbf{y}^T \mathbf{y}\)

To find \(\mathbf{y}^T \mathbf{y}\), perform the standard dot product of \(\mathbf{y}\) and itself: \(\mathbf{y}^T \mathbf{y}=(-1+i)(-1+i)+(2)(2)+(3-i)(3-i)\) Calculate the result: \(\mathbf{y}^T \mathbf{y}=1-2i+i^2+4+9-6i+i^2\) Recall that \(i^2=-1\): \(\mathbf{y}^T \mathbf{y}=1-2i-1+4+9-6i-1\) Therefore, \(\mathbf{y}^T \mathbf{y}=13-8i.\)
03

(c) Find \((\mathbf{x}, \mathbf{y})\)

To find \((\mathbf{x}, \mathbf{y})\), perform the inner product of \(\mathbf{x}\) and \(\mathbf{y}\), which means conjugating the first vector in the product: \((\mathbf{x}, \mathbf{y})=(2)^* (-1+i)+(3i)^*(2)+(1-i)^*(3-i)\) Calculate the conjugates and the result: \((\mathbf{x}, \mathbf{y})=2(-1+i)-3i(2)+(-1+i)(3-i)\) Therefore, \((\mathbf{x}, \mathbf{y})=-2+2i-6i-2-3i+3-1+i\) So, \((\mathbf{x}, \mathbf{y})=-5-6i.\)
04

(d) Find \((\mathbf{y}, \mathbf{y})\)

To find \((\mathbf{y}, \mathbf{y})\), perform the inner product of \(\mathbf{y}\) and itself, which means conjugating the first vector in the product: \((\mathbf{y}, \mathbf{y})=(-1+i)^*(-1+i)+(2)^*(2)+(3-i)^*(3-i)\) Calculate the conjugates and the result: \((\mathbf{y}, \mathbf{y})=(-1-i)(-1+i)+2(2)+(3+i)(3-i)\) Therefore, \((\mathbf{y}, \mathbf{y})=1+2i+i^2+4+9+6i-i^2\) Recall that \(i^2=-1\): \((\mathbf{y}, \mathbf{y})=1+2i-1+4+9+6i+1\) So, \((\mathbf{y}, \mathbf{y})=14+8i.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{cc}{1} & {\sqrt{3}} \\ {\sqrt{3}} & {-1}\end{array}\right) \mathbf{x}+\left(\begin{array}{c}{e^{\prime}} \\\ {\sqrt{3} e^{-t}}\end{array}\right) $$

Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that det \(\mathbf{A}=0\) and that \(y\) is a solution of \(\mathbf{A}^{*} \mathbf{y}=\mathbf{0} .\) Show that if \((\mathbf{b}, \mathbf{y})=0\) for every such \(\mathbf{y},\) then \(\mathbf{A} \mathbf{x}=\mathbf{b}\) has solutions. Note that the converse of Problem \(27 ;\) the form of the solution is given by Problem \(28 .\)

Consider a \(2 \times 2\) system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). If we assume that \(r_{1} \neq r_{2}\), the general solution is \(\mathbf{x}=c_{1} \xi^{(1)} e^{t_{1}^{\prime}}+c_{2} \xi^{(2)} e^{\prime 2},\) provided that \(\xi^{(1)}\) and \(\xi^{(2)}\) are linearly independent In this problem we establish the linear independence of \(\xi^{(1)}\) and \(\xi^{(2)}\) by assuming that they are linearly dependent, and then showing that this leads to a contradiction. $$ \begin{array}{l}{\text { (a) Note that } \xi \text { (i) satisfies the matrix equation }\left(\mathbf{A}-r_{1} \mathbf{I}\right) \xi^{(1)}=\mathbf{0} ; \text { similarly, note that }} \\ {\left(\mathbf{A}-r_{2} \mathbf{I}\right) \xi^{(2)}=\mathbf{0}} \\ {\text { (b) Show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right) \xi^{(1)}=\left(r_{1}-r_{2}\right) \mathbf{\xi}^{(1)}} \\\ {\text { (c) Suppose that } \xi^{(1)} \text { and } \xi^{(2)} \text { are linearly dependent. Then } c_{1} \xi^{(1)}+c_{2} \xi^{(2)}=\mathbf{0} \text { and at least }}\end{array} $$ $$ \begin{array}{l}{\text { one of } c_{1} \text { and } c_{2} \text { is not zero; suppose that } c_{1} \neq 0 . \text { Show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right)\left(c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}\right)=\mathbf{0}} \\ {\text { and also show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right)\left(c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}\right)=c_{1}\left(r_{1}-r_{2}\right) \boldsymbol{\xi}^{(1)} \text { . Hence } c_{1}=0, \text { which is }} \\\ {\text { a contradiction. Therefore } \xi^{(1)} \text { and } \boldsymbol{\xi}^{(2)} \text { are linearly independent. }}\end{array} $$ $$ \begin{array}{l}{\text { (d) Modify the argument of part (c) in case } c_{1} \text { is zero but } c_{2} \text { is not. }} \\ {\text { (e) Carry out a similar argument for the case in which the order } n \text { is equal to } 3 \text { ; note that }} \\ {\text { the procedure can be extended to cover an arbitrary value of } n .}\end{array} $$

The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{\alpha} & {10} \\ {-1} & {-4}\end{array}\right) \mathbf{x} $$

(a) Find the eigenvalues of the given system. (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in the \(x_{1} x_{2}\) -plane. Also draw the trajectories in the \(x_{1} x_{1}-\) and \(x_{2} x_{3}-\) planes. (c) For the initial point in part (b) draw the corresponding trajectory in \(x_{1} x_{2} x_{3}\) -space. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{-\frac{1}{4}} & {1} & {0} \\\ {-1} & {-\frac{1}{4}} & {0} \\ {0} & {0} & {\frac{1}{10}}\end{array}\right) \mathbf{x} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free