Chapter 7: Problem 31
Consider the system $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{-1} & {-1} \\ {-\alpha} & {-1}\end{array}\right) \mathbf{x} $$ $$ \begin{array}{l}{\text { (a) Solve the system for } \alpha=0.5 \text { . What are the eigennalues of the coefficient mattix? }} \\ {\text { Classifith the equilitrium point a the natare the cigemalues of the coefficient matrix? Classify }} \\ {\text { the equilithessm for } \alpha \text { . What as the cigemalluce of the coefficient matrix Classify }} \\ {\text { the equilibrium poin at the oigin as to the styse. ematitue different types of behwior. }} \\\ {\text { (c) the parts (a) and (b) solutions of thesystem exhibit two quite different ypes of behwior. }}\end{array} $$ $$ \begin{array}{l}{\text { Find the eigenvalues of the coefficient matrix in terms of } \alpha \text { and determine the value of } \alpha} \\ {\text { between } 0.5 \text { and } 2 \text { where the transition from one type of behavior to the other occurs. This }} \\ {\text { critical value of } \alpha \text { is called a bifurcation point. }}\end{array} $$ $$ \begin{array}{l}{\text { Electric Circuits. Problems } 32 \text { and } 33 \text { are concerned with the clectric circuit described by the }} \\ {\text { system of differential equations in Problem } 20 \text { of Section } 7.1 \text { : }}\end{array} $$ $$ \frac{d}{d t}\left(\begin{array}{l}{l} \\\ {V}\end{array}\right)=\left(\begin{array}{cc}{-\frac{R_{1}}{L}} & {-\frac{1}{L}} \\ {\frac{1}{C}} & {-\frac{1}{C R_{2}}}\end{array}\right)\left(\begin{array}{l}{I} \\ {V}\end{array}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.