Chapter 7: Problem 30
The two-tank system of Problem 21 in Section 7.1 leads to the initial value problem $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{-\frac{1}{10}} & {\frac{3}{40}} \\\ {\frac{1}{10}} & {-\frac{1}{5}}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}{-17} \\ {-21}\end{array}\right) $$ $$ \begin{array}{l}{\text { where } x_{1} \text { and } x_{2} \text { are the deviations of the salt levels } Q_{1} \text { and } Q_{2} \text { from their respective }} \\ {\text { equilitia. }} \\ {\text { (a) Find the solution of the given initial value problem. }} \\ {\text { (b) Plot } x \text { versus } t \text { and } x_{2} \text { versus on the same set of of thes } 0.5 \text { for all } t \geq T \text { . }} \\ {\text { (c) Find the time } T \text { such that }\left|x_{1}(t)\right| \leq 0.5 \text { and }\left|x_{2}(t)\right| \leq 0.5 \text { for all } t \geq T}\end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.