Chapter 7: Problem 28
A mass \(m\) on a spring with constant \(k\) satisfies the differential equation (see Section 3.8 ) \(m u^{\prime \prime}+k u=0\) where \(u(t)\) is the displacement at time \(t\) of the mass from its equilibrium position. (a) Let \(x_{1}=u\) and \(x_{2}=u^{\prime}\); show that the resulting system is \(\mathbf{x}^{\prime}=\left(\begin{array}{rr}{0} & {1} \\ {-k / m} & {0}\end{array}\right) \mathbf{x}\) (b) Find the eigenvalues of the matrix for the system in part (a). (c) Sketch several trajectories of the system. Choose one of your trajectories and sketch the corresponding graphs of \(x_{1}\) versus \(t\) and of \(x_{2}\) versus \(t\), Sketch both graphs on one set of axes. (d) What is the relation between the eigenvalues of the coefficient matrix and the natural frequency of the spring-mass system?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.