Chapter 7: Problem 27
In this problem we indicate how to show that \(\mathbf{u}(t)\) and \(\mathbf{v}(t)\), as given by Eqs. (9), are linearly independent. Let \(r_{1}=\lambda+i \mu\) and \(\bar{r}_{1}=\lambda-i \mu\) be a pair of conjugate eigenvalues of the coefficient matrix \(\mathbf{A}\) of \(\mathrm{Fq}(1)\); let \(\xi^{(1)}=\mathbf{a}+i \mathbf{b}\) and \(\bar{\xi}^{(1)}=\mathbf{a}-i \mathbf{b}\) be the corresponding eigenvectors. Recall that it was stated in Section 7.3 that if \(r_{1} \neq \bar{r}_{1},\) then \(\boldsymbol{\xi}^{(1)}\) and \(\bar{\xi}^{(1)}\) are linearly independent. (a) First we show that a and b are linearly independent. Consider the equation \(c_{1} \mathrm{a}+\) \(c_{2} \mathrm{b}=0 .\) Express a and \(\mathrm{b}\) in terms of \(\xi^{(1)}\) and \(\bar{\xi}^{(1)},\) and then show that \(\left(c_{1}-i c_{2}\right) \xi^{(1)}+\) \(\left(c_{1}+i c_{2}\right) \bar{\xi}^{(1)}=0\) (b) Show that \(c_{1}-i c_{2}=0\) and \(c_{1}+i c_{2}=0\) and then that \(c_{1}=0\) and \(c_{2}=0 .\) Consequently, a and b are linearly independent. (c) To show that \(\mathbf{u}(t)\) and \(\mathbf{v}(t)\) are linearly independent consider the equation \(c_{1} \mathbf{u}\left(t_{0}\right)+\) \(c_{2} \mathbf{v}\left(t_{0}\right)=\mathbf{0}\), where \(t_{0}\) is an arbitrary point. Rewrite this equation in terms of a and \(\mathbf{b}\), and then proceed as in part (b) to show that \(c_{1}=0\) and \(c_{2}=0 .\) Hence \(\mathbf{u}(t)\) and \(\mathbf{v}(t)\) are linearly independent at the arbitrary point \(t_{0}\). Therefore they are linearly independent at every point and on every interval.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.