Chapter 7: Problem 26
The electric circuit shown in Figure 7.6 .6 is described by the system of differential equations \(\frac{d}{d t}\left(\begin{array}{l}{I} \\\ {V}\end{array}\right)=\left(\begin{array}{cc}{0} & {\frac{1}{L}} \\\ {-\frac{1}{C}} & {-\frac{1}{R C}}\end{array}\right)\left(\begin{array}{l}{I} \\\ {V}\end{array}\right)\) where \(I\) is the current through the inductor and \(V\) is the voltage drop across the capacitor. These differential equations were derived in Problem 18 of Section \(7.1 .\) (a) Show that the eigenvalues of the coefficient matrix are real and different if \(L>4 R^{2} C\); show they are complex conjugates if \(L<4 R^{2} C .\) (b) Suppose that \(R=1\) ohm, \(C=\frac{1}{2}\) farad, and \(L=1\) henry. Find the general solution of the system (i) in this case. (c) Find \(I(t)\) and \(V(t)\) if \(I(0)=2\) amperes and \(V(0)=1\) volt (d) For the circuit of part (b) determine the limiting values of \(I(t)\) and \(V(t)\) as \(t \rightarrow \infty\) Do these limiting values depend on the initial conditions?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.