Chapter 7: Problem 25
In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=1, \quad \xi^{(1)}=\left(\begin{array}{r}{-1} \\ {2}\end{array}\right) ; \quad r_{2}=-2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\\ {2}\end{array}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.