Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\mathbf{A}(t)=\left(\begin{array}{ccc}{e^{t}} & {2 e^{-t}} & {e^{2 t}} \\\ {2 e^{t}} & {e^{-t}} & {-e^{2 t}} \\ {-e^{t}} & {3 e^{-t}} & {2 e^{2 t}}\end{array}\right)\) and \(\mathbf{B}(t)=\left(\begin{array}{ccc}{2 e^{t}} & {e^{-t}} & {3 e^{2 t}} \\ {-e^{t}} & {2 e^{-t}} & {e^{2 t}} \\ {3 e^{t}} & {-e^{-t}} & {-e^{2 t}}\end{array}\right),\) find (a) \(\mathbf{A}+3 \mathbf{B}\) (b) \(\mathrm{AB}\) (c) \(d \mathbf{A} / d t\) (d) \(\int_{0}^{1} \mathbf{A}(t) d t\)

Short Answer

Expert verified
Question: Add A + 3B, multiply A and B, find dA/dt, and integrate A(t) from 0 to 1. Answer: a) A + 3B: $$\mathbf{A}+3 \mathbf{B}=\left(\begin{array}{ccc}{7 e^{t}} & {5 e^{-t}} & {10 e^{2 t}} \\ {-e^{t}} & {7 e^{-t}} & {2 e^{2 t}} \\ {8 e^{t}} & {0} & {-e^{2 t}}\end{array}\right)$$ b) AB: $$\mathbf{AB}(t)=\left(\begin{array}{cccr}{2 e^{2 t} - 2 e^{t-t} + 3 e^{3 t}} & {e^{t-t} + 4 e^{-t-t} - e^{2t-t}} & {3 e^{3t} + 2 e^{-t+2t} - e^{3t}} \\\ {4 e^{2 t} - e^{t-t} - 3 e^{3t-t}} & {2 e^{t-t} + 2 e^{-t-t} + e^{2t-t}} & {6 e^{3t} + e^{-t+2t} + e^{3t}} \\\ {-2 e^{2 t} - 3 e^{t-t} + 6 e^{3 t}} & {- e^{t-t} + 6 e^{-t-t} - 2 e^{2t-t}} & {-3 e^{3t} + 3 e^{-t+2t} - 2 e^{3t}}\end{array}\right)$$ c) dA/dt: $$\frac{d\mathbf{A}}{dt}=\left(\begin{array}{ccc}{e^{t}} & {-2 e^{-t}} & {2 e^{2t}}\\\\ {2 e^{t}} & {- e^{-t}} & {-2 e^{2t}}\\\\ {- e^{t}} & {-3 e^{-t}} & {4 e^{2t}}\end{array}\right)$$ d) Integral of A(t) from 0 to 1: $$\int_{0}^{1} \mathbf{A}(t) dt=\left(\begin{array}{ccc}{e - 1} & {2 - 2 e^{-1}} & {0.5 e^{2} - 0.5}\\\\ {2(e - 1)} & {1 - e^{-1}} & {-0.5 e^{2} + 0.5}\\\\ {-(e - 1)} & {3 - 3 e^{-1}} & {e^{2} - 1}\end{array}\right)$$

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Multiply B by 3

To find 3B, multiply every element in matrix B by 3: $$3\mathbf{B}(t)=\left(\begin{array}{ccc}{6 e^{t}} & {3 e^{-t}} & {9 e^{2 t}} \\\ {-3 e^{t}} & {6 e^{-t}} & {3 e^{2 t}} \\\ {9 e^{t}} & {-3 e^{-t}} & {-3 e^{2 t}}\end{array}\right)$$
02

Add A and 3B

To find A+3B, add the corresponding elements of A and 3B: $$\mathbf{A}(t)+3\mathbf{B}(t)=\left(\begin{array}{ccc}{e^{t}+6e^{t}} & {2 e^{-t}+3 e^{-t}} & {e^{2t}+9e^{2t}}\\\ {2 e^{t}-3 e^{t}} & {e^{-t}+6 e^{-t}} & {-e^{2t}+3 e^{2t}}\\\ {-e^{t}+9 e^{t}} & {3 e^{-t}-3 e^{-t}} & {2 e^{2t}-3 e^{2t}}\end{array}\right)= \left(\begin{array}{ccc}{7 e^{t}} & {5 e^{-t}} & {10 e^{2t}}\\\ {-e^{t}} & {7 e^{-t}} & {2 e^{2t}}\\\ {8 e^{t}} & {0} & {- e^{2t}}\end{array}\right)$$ Answer for (a): $$\mathbf{A}+3 \mathbf{B}=\left(\begin{array}{ccc}{7 e^{t}} & {5 e^{-t}} & {10 e^{2 t}} \\ {-e^{t}} & {7 e^{-t}} & {2 e^{2 t}} \\ {8 e^{t}} & {0} & {-e^{2 t}}\end{array}\right)$$ #b) Multiply A and B#
03

Perform Matrix Multiplication

To find AB, multiply each element in the i-th row of matrix A by the corresponding element in the j-th column of matrix B and sum the products: $$\mathrm{AB}(t)=\left(\begin{array}{ccc} {e^{t}\cdot 2e^{t} + 2e^{-t}\cdot (-e^{t})+e^{2t}\cdot 3e^{t}} & {e^{t}\cdot e^{-t} + 2e^{-t}\cdot 2e^{-t}+e^{2t}\cdot(-e^{-t})} & {e^{t}\cdot 3e^{2t} + 2e^{-t}\cdot e^{2t}+e^{2t}\cdot(-e^{2t})} \\\ {2e^{t}\cdot 2e^{t} + e^{-t}\cdot (-e^{t})+(-e^{2t})\cdot 3e^{t}} & {2e^{t}\cdot e^{-t} + e^{-t}\cdot 2e^{-t}+(-e^{2t})\cdot(-e^{-t})} & {2e^{t}\cdot 3e^{2t} + e^{-t}\cdot e^{2t}+(-e^{2t})\cdot(-e^{2t})} \\\ {-e^{t}\cdot 2e^{t} + 3e^{-t}\cdot (-e^{t})+2e^{2t}\cdot 3e^{t}} & {-e^{t}\cdot e^{-t} + 3e^{-t}\cdot 2e^{-t}+2e^{2t}\cdot(-e^{-t})} & {-e^{t}\cdot 3e^{2t} + 3e^{-t}\cdot e^{2t}+2e^{2t}\cdot(-e^{2t})} \end{array}\right)$$ After simplifying the expressions, we get: Answer for (b): $$\mathbf{AB}(t)=\left(\begin{array}{cccr} {2 e^{2 t} - 2 e^{t-t} + 3 e^{3 t}} & {e^{t-t} + 4 e^{-t-t} - e^{2t-t}} & {3 e^{3t} + 2 e^{-t+2t} - e^{3t}} \\\ {4 e^{2 t} - e^{t-t} - 3 e^{3t-t}} & {2 e^{t-t} + 2 e^{-t-t} + e^{2t-t}} & {6 e^{3t} + e^{-t+2t} + e^{3t}} \\\ {-2 e^{2 t} - 3 e^{t-t} + 6 e^{3 t}} & {- e^{t-t} + 6 e^{-t-t} - 2 e^{2t-t}} & {-3 e^{3t} + 3 e^{-t+2t} - 2 e^{3t}} \end{array}\right)$$ #c) Find dA/dt#
04

Differentiate Each Element of A(t) with respect to t

Take the derivative of each element of A(t) with respect to t: $$\frac{d\mathbf{A}}{dt}=\left(\begin{array}{ccc} {\frac{d}{dt}(e^{t})} & {\frac{d}{dt}(2 e^{-t})} & {\frac{d}{dt}(e^{2t})}\\\\ {\frac{d}{dt}(2 e^{t})} & {\frac{d}{dt}(e^{-t})} & {\frac{d}{dt}(-e^{2t})}\\\\ {\frac{d}{dt}(-e^{t})} & {\frac{d}{dt}(3 e^{-t})} & {\frac{d}{dt}(2 e^{2t})} \end{array}\right)$$ Applying the derivatives to each element, we get: Answer for (c) : $$\frac{d\mathbf{A}}{dt}=\left(\begin{array}{ccc} {e^{t}} & {-2 e^{-t}} & {2 e^{2t}}\\\\ {2 e^{t}} & {- e^{-t}} & {-2 e^{2t}}\\\\ {- e^{t}} & {-3 e^{-t}} & {4 e^{2t}} \end{array}\right)$$ #d) Integrate A(t) from 0 to 1#
05

Integrate Each Element of A(t) with respect to t

Integrate each element of A(t) with respect to t from 0 to 1: $$\int_{0}^{1} \mathbf{A}(t) dt =\left(\begin{array}{ccc} {\int_{0}^{1} e^{t} dt} & {\int_{0}^{1} 2 e^{-t} dt} & {\int_{0}^{1} e^{2t} dt}\\\\ {\int_{0}^{1} 2 e^{t} dt} & {\int_{0}^{1} e^{-t} dt} & {\int_{0}^{1} -e^{2t} dt}\\\\ {\int_{0}^{1} -e^{t} dt} & {\int_{0}^{1} 3 e^{-t} dt} & {\int_{0}^{1} 2 e^{2t} dt} \end{array}\right)$$
06

Evaluate the Integrals

Evaluate each integral in the matrix: $$\int_{0}^{1} \mathbf{A}(t) dt=\left(\begin{array}{ccc} {[e^{t}]_{0}^{1}} & {[2(-e^{-t})]_{0}^{1}} & {[0.5 e^{2t}]_{0}^{1}}\\\\ {[2 e^{t}]_{0}^{1}} & {[-e^{-t}]_{0}^{1}} & {[-0.5 e^{2t}]_{0}^{1}}\\\\ {[-e^{t}]_{0}^{1}} & {[3(-e^{-t})]_{0}^{1}} & {[ e^{2t}]_{0}^{1}} \end{array}\right)$$ After evaluating the expressions, we get: Answer for (d) : $$\int_{0}^{1} \mathbf{A}(t) dt=\left(\begin{array}{ccc} {e - 1} & {2 - 2 e^{-1}} & {0.5 e^{2} - 0.5}\\\\ {2(e - 1)} & {1 - e^{-1}} & {-0.5 e^{2} + 0.5}\\\\ {-(e - 1)} & {3 - 3 e^{-1}} & {e^{2} - 1} \end{array}\right)$$

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Matrix Addition
Matrix addition is one of the fundamental operations in linear algebra, applicable to matrices of the same size. It's done by adding corresponding elements together to create a new matrix. For instance, if you have two matrices, \( \mathbf{A} \) and \( \mathbf{B} \) of the same dimensions, their sum \( \mathbf{A} + \mathbf{B} \) is a matrix where each element \( (\mathbf{A} + \mathbf{B})_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij} \).

When solving an exercise involving matrix addition, it’s vital to ensure that the matrices are of equal size to proceed. In the given exercise, matrix \( \mathbf{A} \) is added to thrice matrix \( \mathbf{B} \) (after multiplying every element in \( \mathbf{B} \) by 3), exemplifying the element-wise addition procedure.
Matrix Multiplication
Matrix multiplication diverges significantly from element-wise addition. It involves the dot product of rows and columns, yielding a new matrix whose elements come from summing the product of the corresponding entries of the row in the first matrix and the column in the second matrix.

Here’s a quick guide:
  • Element \( (\mathbf{AB})_{ij} \) in the resulting matrix is obtained by multiplying elements from the i-th row of matrix \( \mathbf{A} \) with the corresponding elements from the j-th column of matrix \( \mathbf{B} \) and summing the products.
  • For the multiplication to be valid, the number of columns in \( \mathbf{A} \) must equal the number of rows in \( \mathbf{B} \).
In the provided exercise, matrix \( \mathbf{A} \) is multiplied with \( \mathbf{B} \) to demonstrate matrix multiplication. One crucial aspect of matrix multiplication is that it is not commutative, meaning \( \mathbf{AB} \) is not necessarily equal to \( \mathbf{BA} \).
Matrix Differentiation
In applying calculus to matrices, matrix differentiation involves taking the derivative of each matrix element with respect to a variable, often time (t), resulting in a new matrix of the same size with each element being the derivative of the original element.

Steps to differentiate a matrix function \( \mathbf{A}(t) \) component-wise include:
  • Identify the function that each element of the matrix \( \mathbf{A}(t) \) represents.
  • Calculate the derivative of each function with respect to the variable \( t \) individually.
The exercise demonstrates differentiation of a matrix where each element is a function of \( t \). It’s important to apply the standard rules of differentiation to matrix functions just as one would for scalar functions.
Matrix Integration
Matrix integration is the counterpart of differentiation, and it involves integrating each element of the matrix function with respect to a variable. It produces a new matrix where each element is the integral of the corresponding element in the original matrix.

Just as with single-variable integration, there are similar steps to follow:
  • Identify the integral of each matrix element function with respect to a variable over a specified interval.
  • Compute the definite integral for each element if the limits of integration are provided, or an indefinite integral otherwise.
Our example involved integrating the matrix \( \mathbf{A}(t) \) from \( t = 0 \) to \( t = 1 \), which showcases how to apply limits of integration to obtain the matrix of integrated elements.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Express the general solution of the given system of equations in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field, sketch a few of the trajectories, and describe the behavior of the solutions as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{-1} & {-4} \\ {1} & {-1}\end{array}\right) \mathbf{x} $$

Consider again the cliectric circuit in Problem 26 of Scction 7.6 . This circut is described by the system of differential equations $$ \frac{d}{d t}\left(\begin{array}{l}{I} \\\ {V}\end{array}\right)=\left(\begin{array}{cc}{0} & {\frac{1}{L}} \\\ {-\frac{1}{C}} & {-\frac{1}{R C}}\end{array}\right)\left(\begin{array}{l}{I} \\\ {V}\end{array}\right) $$ (a) Show that the eigendlucs are raal and equal if \(L=4 R^{2} C\). (b) Suppose that \(R=1\) ohm, \(C=1\) farad, and \(L=4\) henrys. Suppose also that \(I(0)=1\) ampere and \(V(0)=2\) volts. Find \(I(t)\) and \(V(t) .\)

Solve the given initial value problem. Describe the behavior of the solution as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{0} & {0} & {-1} \\ {2} & {0} & {0} \\ {-1} & {2} & {4}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}{7} \\ {5} \\ {5}\end{array}\right) $$

find a fundamental matrix for the given system of equations. In each case also find the fundamental matrix \(\mathbf{\Phi}(t)\) satisfying \(\Phi(0)=\mathbf{1}\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{3} & {-2} \\ {2} & {-2}\end{array}\right) \mathbf{x} $$

Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rr}{-2} & {1} \\ {1} & {-2}\end{array}\right) $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free