Chapter 7: Problem 19
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{1} & {\sqrt{3}} \\ {\sqrt{3}} & {-1}\end{array}\right) $$
Chapter 7: Problem 19
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{1} & {\sqrt{3}} \\ {\sqrt{3}} & {-1}\end{array}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathbf{J}=\left(\begin{array}{cc}{\lambda} & {1} \\ {0} & {\lambda}\end{array}\right),\) where \(\lambda\) is an arbitrary real number. (a) Find \(\mathbf{J}^{2}, \mathbf{J}^{3},\) and \(\mathbf{J}^{4}\) (b) Use an inductive argument to show that \(\mathbf{J}^{n}=\left(\begin{array}{cc}{\lambda^{n}} & {n \lambda^{n-1}} \\\ {0} & {\lambda^{n}}\end{array}\right)\) (c) Determine exp(Jt). (d) Use exp(Jt) to solve the initial value problem \(\mathbf{x}^{\prime}=\mathbf{J x}, \mathbf{x}(0)=\mathbf{x}^{0}\)
In each of Problems 13 through 20 the coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{\alpha} & {1} \\ {-1} & {\alpha}\end{array}\right) \mathbf{x} $$
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{2} & {-1} \\ {3} & {-2}\end{array}\right) \mathbf{x}+\left(\begin{array}{l}{e^{t}} \\\ {t}\end{array}\right) $$
find a fundamental matrix for the given system of equations. In each case also find the fundamental matrix \(\mathbf{\Phi}(t)\) satisfying \(\Phi(0)=\mathbf{1}\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{2} & {-1} \\ {3} & {-2}\end{array}\right) \mathbf{x} $$
Verify that the given vector is the general solution of the corresponding homogeneous system, and then solve the non-homogeneous system. Assume that \(t>0 .\) $$ t \mathbf{x}^{\prime}=\left(\begin{array}{cc}{2} & {-1} \\ {3} & {-2}\end{array}\right) \mathbf{x}+\left(\begin{array}{c}{1-t^{2}} \\ {2 t}\end{array}\right), \quad \mathbf{x}^{(t)}=c_{1}\left(\begin{array}{c}{1} \\\ {1}\end{array}\right) t+c_{2}\left(\begin{array}{c}{1} \\\ {3}\end{array}\right) t^{-1} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.