Chapter 7: Problem 19
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{1} & {\sqrt{3}} \\ {\sqrt{3}} & {-1}\end{array}\right) $$
Chapter 7: Problem 19
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{1} & {\sqrt{3}} \\ {\sqrt{3}} & {-1}\end{array}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of the given system of equations.
$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}{2} & {-5} \\ {1} &
{-2}\end{array}\right) \mathbf{x}+\left(\begin{array}{c}{0} \\ {\cos
t}\end{array}\right), \quad 0
Consider the initial value problem $$ x^{\prime}=A x+g(t), \quad x(0)=x^{0} $$ (a) By referring to Problem \(15(c)\) in Section \(7.7,\) show that $$ x=\Phi(t) x^{0}+\int_{0}^{t} \Phi(t-s) g(s) d s $$ (b) Show also that $$ x=\exp (A t) x^{0}+\int_{0}^{t} \exp [\mathbf{A}(t-s)] \mathbf{g}(s) d s $$ Compare these results with those of Problem 27 in Section \(3.7 .\)
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{lll}{3} & {2} & {4} \\ {2} & {0} & {2} \\ {4} & {2} & {3}\end{array}\right) \mathbf{x} $$
In each of Problems 1 through 8 express the general solution of the given system of equations in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field, sketch a few of the trajectories, and describe the behavior of the solutions as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{3} & {-2} \\ {4} & {-1}\end{array}\right) \mathbf{x} $$
The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{3} & {\alpha} \\ {-6} & {-4}\end{array}\right) \mathbf{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.