Chapter 7: Problem 18
Consider the system $$ \mathbf{x}^{\prime}=\mathbf{A x}=\left(\begin{array}{rrr}{5} & {-3} & {-2} \\\ {8} & {-5} & {-2} \\ {-4} & {-5} & {-4} \\ {-4} & {3} & {3}\end{array}\right) \mathbf{x} $$ (a) Show that \(r=1\) is a triple eigenvalue of the coefficient matrix \(\mathbf{A},\) and that there are only two linearly independent eigenvectors, which we may take as $$ \xi^{(1)}=\left(\begin{array}{l}{1} \\ {0} \\ {2}\end{array}\right), \quad \xi^{(2)}=\left(\begin{array}{r}{0} \\ {2} \\ {-3}\end{array}\right) $$ Find two linearly independent solutions \(\mathbf{x}^{(1)}(t)\) and \(\mathbf{x}^{(2)}(t)\) of Eq. (i). (b) To find a third solution assume that \(\mathbf{x}=\xi t e^{t}+\mathbf{\eta} e^{\lambda} ;\) thow that \(\xi\) and \(\eta\) must satisfy $$ (\mathbf{A}-\mathbf{1}) \xi=0 $$ \((\mathbf{A}-\mathbf{I}) \mathbf{\eta}=\mathbf{\xi}\) (c) Show that \(\xi=c_{1} \xi^{(1)}+c_{2} \mathbf{\xi}^{(2)},\) where \(c_{1}\) and \(c_{2}\) are arbitrary constants, is the most general solution of Eq. (iii). Show that in order to solve Eq. (iv) it is necessary that \(c_{1}=c_{2}\) (d) It is convenient to choose \(c_{1}=c_{2}=2 .\) For this choice show that $$ \xi=\left(\begin{array}{r}{2} \\ {4} \\ {-2}\end{array}\right), \quad \mathbf{\eta}=\left(\begin{array}{r}{0} \\ {0} \\ {-1}\end{array}\right) $$ where we have dropped the multiples of \(\xi^{(1)}\) and \(\xi^{(2)}\) that appear in \(\eta\). Use the results given in Eqs. (v) to find a third linearly independent solution \(\mathbf{x}^{(3)}\) of Eq. (i). (e) Write down a fundamental matrix \(\Psi(t)\) for the system (i). (f) Form a matrix T with the cigenvector \(\xi^{(1)}\) in the first column and with the eigenvector \(\xi\) and the generalized eigenvector \(\eta\) from Eqs. (v) in the other two columns. Find \(\mathbf{T}^{-1}\) and form the product \(\mathbf{J}=\mathbf{T}^{-1} \mathbf{A} \mathbf{T}\). The matrix \(\mathbf{J}\) is the Jordan form of \(\mathbf{A} .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.