Chapter 7: Problem 16
Let \(\mathbf{x}=\Phi(t)\) be the general solution of \(\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t),\) and let \(\mathbf{x}=\mathbf{v}(t)\) be some particular solution of the same system. By considering the difference \(\boldsymbol{\phi}(t)-\mathbf{v}(t),\) show that \(\Phi(t)=\mathbf{u}(t)+\mathbf{v}(t),\) where \(\mathbf{u}(t)\) is the general solution of the homogeneous system \(\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x} .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.