Chapter 7: Problem 15
Show that all solutions of the system $$ x^{\prime}=\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right) \mathbf{x} $$ approach zero as \(t \rightarrow \infty\) if and only if \(a+d<0\) and \(a d-b c>0 .\) Compare this result with that of Problem 38 in Section \(3.5 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Eigenvalues and Eigenvectors
ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline $$ x^{\text{\textquotesingle}}=A\textbf{x}$$ewline ewline ewline an eigenvalue ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline �is determined when the determinant of the matrix minus a scalar ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline �times the identity matrix equals zero. The eigenvectors associated with each eigenvalue are nonzero vectors that only change by a scalar multiple when the matrix is applied to them. They reveal the directions in which a system's state vector is stretched or compressed.In our problem, we're tasked with finding the eigenvalues by solving for ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline � in ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline ewline �the determinant equation. Understanding these values gives insight into the state of the system as time progresses. Particularly, whether the system's solutions will diverge, converge, or remain steady over time.