Chapter 7: Problem 15
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) $$
Chapter 7: Problem 15
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExpress the general solution of the given system of equations in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field, sketch a few of the trajectories, and describe the behavior of the solutions as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{cc}{2} & {-\frac{3}{2}} \\\ {\frac{9}{5}} & {-1}\end{array}\right) \mathbf{x} $$
Express the general solution of the given system of equations in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field, sketch a few of the trajectories, and describe the behavior of the solutions as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{1} & {2} \\ {-5} & {-1}\end{array}\right) \mathbf{x} $$
The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{\frac{5}{4}} & {\frac{2}{4}} \\\ {\alpha} & {\frac{5}{4}}\end{array}\right) \mathbf{x} $$
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{lll}{3} & {2} & {4} \\ {2} & {0} & {2} \\ {4} & {2} & {3}\end{array}\right) $$
Show that all solutions of the system $$ x^{\prime}=\left(\begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right) \mathbf{x} $$ approach zero as \(t \rightarrow \infty\) if and only if \(a+d<0\) and \(a d-b c>0 .\) Compare this result with that of Problem 38 in Section \(3.5 .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.