Chapter 7: Problem 15
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) $$
Chapter 7: Problem 15
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn this problem we show that the eigenvalues of a Hermitian matrix \(\Lambda\) are real. Let \(x\) be an eigenvector corresponding to the eigenvalue \(\lambda\). (a) Show that \((A x, x)=(x, A x)\). Hint: See Problem 31 . (b) Show that \(\lambda(x, x)=\lambda(x, x)\), Hint: Recall that \(A x=\lambda x\). (c) Show that \(\lambda=\lambda\); that is, the cigenvalue \(\lambda\) is real.
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{ccc}{11 / 9} & {-2 / 9} & {8 / 9} \\ {-2 / 9} & {2 / 9} & {10 / 9} \\ {8 / 9} & {10 / 9} & {5 / 9}\end{array}\right) $$
The clectric circuit shown in Figure 7.9 .1 is described by the system of differential equations $$ \frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}{-\frac{1}{2}} & {-\frac{1}{8}} \\ {2} & {-\frac{1}{2}}\end{array}\right) \mathbf{x}+\left(\begin{array}{c}{\frac{1}{2}} \\ {0}\end{array}\right) I(t) $$ where \(x_{1}\) is the current through the inductor, \(x_{2}\) is the voltage drop across the capacitor, and \(I(t)\) is the current supplied by the external source. (a) Determine a fundamental matrix \(\Psi(t)\) for the homogeneous system corresponding to Eq. (i). Refer to Problem 25 of Section \(7.6 .\) (b) If \(I(t)=e^{-t / 2}\), determine the solution of the system (i) that also satisfies the initial conditions \(\mathbf{x}(0)=0\).
The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{0} & {-5} \\ {1} & {\alpha}\end{array}\right) \mathbf{x} $$
find a fundamental matrix for the given system of equations. In each case also find the fundamental matrix \(\mathbf{\Phi}(t)\) satisfying \(\Phi(0)=\mathbf{1}\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{2} & {-5} \\ {1} & {-2}\end{array}\right) \mathbf{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.