Chapter 7: Problem 15
Either compute the inverse of the given matrix, or else show that it is singular. \(\left(\begin{array}{lll}{2} & {1} & {0} \\ {0} & {2} & {1} \\ {0} & {0} & {2}\end{array}\right)\)
Chapter 7: Problem 15
Either compute the inverse of the given matrix, or else show that it is singular. \(\left(\begin{array}{lll}{2} & {1} & {0} \\ {0} & {2} & {1} \\ {0} & {0} & {2}\end{array}\right)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the equation $$ a y^{\prime \prime}+b y^{\prime}+c y=0 $$ $$ \begin{array}{l}{\text { where } a, b, \text { and } c \text { are constants. In Chapter } 3 \text { it was shown that the general solution depended }} \\\ {\text { on the roots of the characteristic equation }}\end{array} $$ $$ a r^{2}+b r+c=0 $$ $$ \begin{array}{l}{\text { (a) Transform Eq. (i) into a system of first order equations by letting } x_{1}=y, x_{2}=y^{\prime} . \text { Find }} \\ {\text { the system of equations } x^{\prime}=A x \text { satisfied by } x=\left(\begin{array}{l}{x_{1}} \\ {x_{2}} \\ {x_{2}}\end{array}\right)} \\\ {\text { (b) Find the equation that determines the eigenvalues of the coefficient matrix } \mathbf{A} \text { in part (a). }} \\ {\text { Note that this equation is just the characteristic equation (ii) of Eq. (i). }}\end{array} $$
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{4} & {-2} \\ {8} & {-4}\end{array}\right) \mathbf{x}+\left(\begin{array}{r}{t^{-3}} \\\ {-t^{-2}}\end{array}\right), \quad t>0 $$
Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that det \(\mathbf{A}=0\) and that \(y\) is a solution of \(\mathbf{A}^{*} \mathbf{y}=\mathbf{0} .\) Show that if \((\mathbf{b}, \mathbf{y})=0\) for every such \(\mathbf{y},\) then \(\mathbf{A} \mathbf{x}=\mathbf{b}\) has solutions. Note that the converse of Problem \(27 ;\) the form of the solution is given by Problem \(28 .\)
Solve the given system of equations in each of Problems 20 through 23. Assume that \(t>0 .\) $$ t \mathbf{x}^{\prime}=\left(\begin{array}{rr}{5} & {-1} \\ {3} & {1}\end{array}\right) \mathbf{x} $$
In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=1, \quad \xi^{(1)}=\left(\begin{array}{r}{-1} \\ {2}\end{array}\right) ; \quad r_{2}=-2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\\ {2}\end{array}\right) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.