Chapter 7: Problem 12
Determine whether the given set of vectors is linearly independent for
\(-\infty
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 12
Determine whether the given set of vectors is linearly independent for
\(-\infty
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn this problem we show that the eigenvalues of a Hermitian matrix \(\Lambda\) are real. Let \(x\) be an eigenvector corresponding to the eigenvalue \(\lambda\). (a) Show that \((A x, x)=(x, A x)\). Hint: See Problem 31 . (b) Show that \(\lambda(x, x)=\lambda(x, x)\), Hint: Recall that \(A x=\lambda x\). (c) Show that \(\lambda=\lambda\); that is, the cigenvalue \(\lambda\) is real.
In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix \(\mathrm{A}\) are given. Consider the corresponding system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). $$ \begin{array}{l}{\text { (a) Sketch a phase portrait of the system. }} \\\ {\text { (b) Sketch the trajectory passing through the initial point }(2,3) \text { . }} \\ {\text { (c) For the trajectory in part (b) sketch the graphs of } x_{1} \text { versus } t \text { and of } x_{2} \text { versus } t \text { on the }} \\ {\text { same set of axes. }}\end{array} $$ $$ r_{1}=-1, \quad \xi^{(0)}=\left(\begin{array}{r}{-1} \\ {2}\end{array}\right) ; \quad r_{2}=2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\\ {2}\end{array}\right) $$
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{4} & {-2} \\ {8} & {-4}\end{array}\right) \mathbf{x}+\left(\begin{array}{r}{t^{-3}} \\\ {-t^{-2}}\end{array}\right), \quad t>0 $$
Find the solution of the given initial value problem. Draw the trajectory of the solution in the \(x_{1} x_{2}-\) plane and also the graph of \(x_{1}\) versus \(t .\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{3} & {9} \\ {-1} & {-3}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}{2} \\ {4}\end{array}\right) $$
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{2} & {2+i} \\ {-1} & {-1-i}\end{array}\right) \mathbf{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.