Chapter 7: Problem 12
Determine whether the given set of vectors is linearly independent for
\(-\infty
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 12
Determine whether the given set of vectors is linearly independent for
\(-\infty
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the solution of the given initial value problem. Draw the trajectory of the solution in the \(x_{1} x_{2}-\) plane and also the graph of \(x_{1}\) versus \(t .\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{3} & {9} \\ {-1} & {-3}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}{2} \\ {4}\end{array}\right) $$
The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{\alpha} & {10} \\ {-1} & {-4}\end{array}\right) \mathbf{x} $$
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{-4} & {2} \\ {2} & {-1}\end{array}\right) \mathbf{x}+\left(\begin{array}{c}{t^{-1}} \\ {2 t^{-1}+4}\end{array}\right), \quad t>0 $$
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{2} & {-5} \\ {1} & {-2}\end{array}\right) \mathbf{x}+\left(\begin{array}{r}{-\cos t} \\ {\sin t}\end{array}\right) $$
Show that if \(\lambda_{1}\) and \(\lambda_{2}\) are eigenvalues of a Hermitian matrix \(\mathbf{A},\) and if \(\lambda_{1} \neq \lambda_{2},\) then the corresponding eigenvectors \(\mathbf{x}^{(1)}\) and \(\mathbf{x}^{(2)}\) are orthogonal. Hint: Use the results of Problems 31 and 32 to show that \(\left(\lambda_{1}-\lambda_{2}\right)\left(\mathbf{x}^{(1)}, \mathbf{x}^{(1)}\right)=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.