Chapter 7: Problem 12
Determine whether the given set of vectors is linearly independent for
\(-\infty
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 12
Determine whether the given set of vectors is linearly independent for
\(-\infty
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ x^{\prime}=\left(\begin{array}{cc}{4} & {\alpha} \\ {8} & {-6}\end{array}\right) \mathbf{x} $$
Consider a \(2 \times 2\) system \(\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}\). If we assume that \(r_{1} \neq r_{2}\), the general solution is \(\mathbf{x}=c_{1} \xi^{(1)} e^{t_{1}^{\prime}}+c_{2} \xi^{(2)} e^{\prime 2},\) provided that \(\xi^{(1)}\) and \(\xi^{(2)}\) are linearly independent In this problem we establish the linear independence of \(\xi^{(1)}\) and \(\xi^{(2)}\) by assuming that they are linearly dependent, and then showing that this leads to a contradiction. $$ \begin{array}{l}{\text { (a) Note that } \xi \text { (i) satisfies the matrix equation }\left(\mathbf{A}-r_{1} \mathbf{I}\right) \xi^{(1)}=\mathbf{0} ; \text { similarly, note that }} \\ {\left(\mathbf{A}-r_{2} \mathbf{I}\right) \xi^{(2)}=\mathbf{0}} \\ {\text { (b) Show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right) \xi^{(1)}=\left(r_{1}-r_{2}\right) \mathbf{\xi}^{(1)}} \\\ {\text { (c) Suppose that } \xi^{(1)} \text { and } \xi^{(2)} \text { are linearly dependent. Then } c_{1} \xi^{(1)}+c_{2} \xi^{(2)}=\mathbf{0} \text { and at least }}\end{array} $$ $$ \begin{array}{l}{\text { one of } c_{1} \text { and } c_{2} \text { is not zero; suppose that } c_{1} \neq 0 . \text { Show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right)\left(c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}\right)=\mathbf{0}} \\ {\text { and also show that }\left(\mathbf{A}-r_{2} \mathbf{I}\right)\left(c_{1} \boldsymbol{\xi}^{(1)}+c_{2} \boldsymbol{\xi}^{(2)}\right)=c_{1}\left(r_{1}-r_{2}\right) \boldsymbol{\xi}^{(1)} \text { . Hence } c_{1}=0, \text { which is }} \\\ {\text { a contradiction. Therefore } \xi^{(1)} \text { and } \boldsymbol{\xi}^{(2)} \text { are linearly independent. }}\end{array} $$ $$ \begin{array}{l}{\text { (d) Modify the argument of part (c) in case } c_{1} \text { is zero but } c_{2} \text { is not. }} \\ {\text { (e) Carry out a similar argument for the case in which the order } n \text { is equal to } 3 \text { ; note that }} \\ {\text { the procedure can be extended to cover an arbitrary value of } n .}\end{array} $$
Deal with the problem of solving \(\mathbf{A x}=\mathbf{b}\) when \(\operatorname{det} \mathbf{A}=0\) Suppose that, for a given matrix \(\mathbf{A}\), there is a nonzero vector \(\mathbf{x}\) such that \(\mathbf{A x}=\mathbf{0 . ~ S h o w ~}\) that there is also a nonzero vector \(\mathbf{y}\) such that \(\mathbf{A}^{*} \mathbf{y}=\mathbf{0} .\)
Find the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{-\frac{5}{4}} & {\frac{3}{4}} \\\ {\frac{3}{4}} & {-\frac{5}{4}}\end{array}\right) \mathbf{x}+\left(\begin{array}{c}{2 t} \\ {e^{t}}\end{array}\right) $$
Find all eigenvalues and eigenvectors of the given matrix. $$ \left(\begin{array}{cc}{-3} & {3 / 4} \\ {-5} & {1}\end{array}\right) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.