Chapter 7: Problem 11
Suppose that the vectors \(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}\) each
have \(n\) components, where \(n
Chapter 7: Problem 11
Suppose that the vectors \(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}\) each
have \(n\) components, where \(n
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of the given system of equations. $$ \mathbf{x}^{\prime}=\left(\begin{array}{ll}{2} & {-1} \\ {3} & {-2}\end{array}\right) \mathbf{x}+\left(\begin{array}{l}{e^{t}} \\\ {t}\end{array}\right) $$
The coefficient matrix contains a parameter \(\alpha\). In each of these problems: (a) Determine the eigervalues in terms of \(\alpha\). (b) Find the critical value or values of \(\alpha\) where the qualitative nature of the phase portrait for the system changes. (c) Draw a phase portrait for a value of \(\alpha\) slightly below, and for another value slightly above, each crititical value. $$ \mathbf{x}^{\prime}=\left(\begin{array}{rr}{3} & {\alpha} \\ {-6} & {-4}\end{array}\right) \mathbf{x} $$
Solve the given initial value problem. Describe the behavior of the solution as \(t \rightarrow \infty\). $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{1} & {1} & {2} \\ {0} & {2} & {2} \\ {-1} & {1} & {3}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}{2} \\ {0} \\ {1}\end{array}\right) $$
Solve the given system of equations in each of Problems 20 through 23. Assume that \(t>0 .\) $$ r_{1}=-1, \quad \xi^{(1)}=\left(\begin{array}{c}{-1} \\\ {2}\end{array}\right): \quad r_{2}=-2, \quad \xi^{(2)}=\left(\begin{array}{c}{1} \\ {2}\end{array}\right) $$
Find the solution of the given initial value problem. Draw the corresponding trajectory in \(x_{1} x_{2} x_{3}\) - space and also draw the graph of \(x_{1}\) versus \(t .\) $$ \mathbf{x}^{\prime}=\left(\begin{array}{rrr}{1} & {0} & {0} \\ {-4} & {1} & {0} \\ {3} & {6} & {2}\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{r}{-1} \\ {2} \\ {-30}\end{array}\right) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.